
36-788, Fall 2015
Homework 1

Due Sep 17.

1. (Mill’s ratio). Let Φ: R→ [0, 1] the c.d.f. of the standard Gaussian distribution on R and φ its p.d.f..

(a) Prove that, for all x > 0,
x

1 + x2
φ(x) ≤ Φ(x) ≤ 1

x
φ(x)

(b) Prove that, for all x > 0,

Φ(x) ≤ 1

2
exp

(
−x2/2

)
.

2. Let X = (X1, . . . , Xd) ∈ Rd be a random vector with covariance matrix Σ such that Xi√
Σi,i

is sub-

Gaussian with parameter ν2, for all i = 1, . . . , d. Assume we observe n i.i.d. copies of X and compute
the empirical covariance matrix Σ̂. Show that, for all i, j ∈ {1, . . . , d},

P
(∣∣∣Ŝi,j − Σi,j

∣∣∣ > ε
)
≤ C1e

−ε2nC2 ,

for some constants C1 and C2. Conclude that

max
i,j

∣∣∣Ŝi,j − Σi,j

∣∣∣ = OP

(√
log d

n
.

)

You may want to consult these references:

• Lemma 12 in Yuan. M. (2010). High Dimensional Inverse Covariance Matrix Estimation via
Linear Programming, JMLR, 11, 2261-2286.

• Lemma 1 in Ravikumar, P., Wainwright, M.J., Raskutti, G. and Yu, B. (2011). EJS, 5, 935-980.

• Lemma A.3 in Bickel, P.J. and Levina, E. (2008). Regularized estimation of large covariance
matrices, teh Annals of Statistics, 36(1), 199-227.

3. (Sampling with replacement). Let X a finite set with N elements. Let X1, . . . , Xn be a random
sample without replacement from X and Y1, . . . , Yn be a random sample with replacement from X .
Show that, for any convex function f : Rn → R,

E

[
f

(
n∑
i=1

Xi

)]
≤ E

[
f

(
n∑
i=1

Yi

)]
.

Use this result to show that all the inequalities derived for the sums of independent random variables
{Y1, . . . , Yn} using Chernoff’s bounding techniques remain true also for the sums of the Xi’s. (see
Hoeffding, W. (1963). Probility Inequalities for sums of Bounded Random Variables, by W. Hoeffding,
JASA, 58, 13–30., 1963).

4. (Moments versus Cernoff bounds). Show that moment bounds for tail probabilities are always better
than CrameérChernoff bounds. More precisely, let Y be a nonnegative random variable and let t > 0.
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The best moment bound for the tail probability PY ≥ t is minq E[Y q]tq where the minimum is taken
over all positive integers. The best CramérChernoff bound is infλ>0 Eeλ(Y t). Prove that

min
q

E[Y q]tq ≤ inf
λ>0

Eeλ(Y t).

(See Philips, T.K. and Nelson, R. (1995). The moment bound is tighter than Chernoffs bound for
positive tail probabilities. The American Statistician, 49, 175-178.)

5. (Concentration function of the standard Gaussian). Here is a way to get the (dimension free) con-
centration function for the standard normal in Rn, with suboptimal constants. Let γn denote the
standard Gaussian distribution in Rn and A ⊂ Rn be measurable. Prove that∫

Rn

ed(x,A)dγn(x) ≤ 1

γn(A)
,

which implies that, for any A with γn(A) ≥ 1/2,

γn(Acr) ≤ 2er
2/4.

Above, d(x,A) = infy∈A ‖x− y‖ and Ar = {x : d(X,A) < r}, r > 0.

Proceed in this way: use the following theorem with f(x) = ed(x,A)2/4γn(x), g(x) = 1x∈Aγn(x) and
h(x) = γn.

Theorem 0.1 (Prépoka-Leinder Inequality) If f and g and h are non-negative measurable func-
tions on Rn and λ ∈ (0, 1) is such that, for all x and y in Rn,

h ((1− λ)x+ λy) ≥ f(x)1−λg(y)λ,

then, ∫
Rn

h(x)dx =

(∫
Rn

f(x)dx

)1−λ(∫
Rn

g(x)dx

)λ
.

See Theorem 8.1 in: K. Ball, An elementary introduction to modern convex geometry, in: Flavors of
Geometry, pp. 158, Math. Sci. Res. Inst. Publ. Vol. 31, Cambridge Univ. Press, Cambridge, 1997.

6. Bounds bounds bounds...

(a) Suppose that, for all ε > 0,
P (|X| ≥ ε) ≤ c1e

−c1nεa ,

where a ∈ {1, 2}. Show that
E [|X|] ≤ c3n

−1/a

and express c3 as a function of c1 and c2.

(b) (From Bernstein exponential inequality to high probability bounds). Suppose that, for all ε > 0,
and some positive constants a, b, c and d,

P (|X| ≥ t) ≤ aexp

{
− nbε2

c+ dε

}
.

Then show that, for any δ ∈ (0, 1),

|X| ≤
√

c

nb
ln
a

δ
+

d

nb
ln
a

δ
,

with probability at least 1− δ.
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7. Let X be distributed like a Nn(0, In), where In is the n-dimensional identity matrix. Show that, for
any ε ∈ (0, 1)

P
(∣∣‖X‖2 − n∣∣ ≥ ε) ≤ e−nε2/8.

This results says that, in high dimensions, X is tightly concentrated around a sphere of radius
√
n.

This may seem counterintuitive, since the density of X is maximal at 0 and decays exponentially fast
as we move away from the origin. So what’s going on? (Hint: think about the fact that most of the
volume of the ball in Rn of radius

√
n concentrates around the sphere of radius

√
n enclosing it...).

See, e.g., Lemma 2 in A Probabilistic Analysis of EM for Mixtures of Separated, Spherical Gaussians,
by S. Dasgupta and L. Schulman, JMLR, 8, 203–26, 2007.
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