36-788, Fall 2015
Homework 1

Due Sep 17.

1. (Mill’s ratio). Let ®: R — [0, 1] the c.d.f. of the standard Gaussian distribution on R and ¢ its p.d.f..

(a) Prove that, for all x > 0,

T 1
O(x) < =
T 0(e) < 8(2) < ()
(b) Prove that, for all z > 0,
1
O(z) < 5 €XP (—2%/2)

2. Let X = (X1,...,Xq) € R? be a random vector with covariance matrix ¥ such that \/);ﬁ is sub-
Gaussian with parameter 2, for alli =1,...,d. Assume we observe n i.i.d. copies of X and compute
the empirical covariance matrix ¥. Show that, for all ¢,5 € {1,...,d},

P ( Sij— Sij| > 6) < e,

for some constants C7 and C5. Conclude that

~

Sij = Hij

max
Z?]

1
n

e Lemma 12 in Yuan. M. (2010). High Dimensional Inverse Covariance Matrix Estimation via
Linear Programming, JMLR, 11, 2261-2286.

e Lemma 1 in Ravikumar, P., Wainwright, M.J., Raskutti, G. and Yu, B. (2011). EJS, 5, 935-980.

e Lemma A.3 in Bickel, P.J. and Levina, E. (2008). Regularized estimation of large covariance
matrices, teh Annals of Statistics, 36(1), 199-227.

You may want to consult these references:

3. (Sampling with replacement). Let X a finite set with N elements. Let Xi,..., X, be a random
sample without replacement from X and Y7,...,Y, be a random sample with replacement from X.
Show that, for any convex function f: R” — R,

n
i=1

/(57)

Use this result to show that all the inequalities derived for the sums of independent random variables
{Y1,...,Y,} using Chernoff’s bounding techniques remain true also for the sums of the X;’s. (see
Hoeffding, W. (1963). Probility Inequalities for sums of Bounded Random Variables, by W. Hoeffding,
JASA, 58, 13-30., 1963).

E <E

4. (Moments versus Cernoff bounds). Show that moment bounds for tail probabilities are always better
than CrameérChernoff bounds. More precisely, let Y be a nonnegative random variable and let ¢ > 0.



The best moment bound for the tail probability PY" > t is min, E[Y9]t? where the minimum is taken
over all positive integers. The best CramérChernoff bound is infysoEe*¥ "), Prove that
min E[Y9)t? < inf Ee*?).
q A>0
(See Philips, T.K. and Nelson, R. (1995). The moment bound is tighter than Chernoffs bound for
positive tail probabilities. The American Statistician, 49, 175-178.)

5. (Concentration function of the standard Gaussian). Here is a way to get the (dimension free) con-
centration function for the standard normal in R", with suboptimal constants. Let -, denote the
standard Gaussian distribution in R™ and A C R™ be measurable. Prove that

1
/ . (@) <

which implies that, for any A with ~,(A) > 1/2,
(AS) < 2e™ /4,
Above, d(z, A) = infyeq ||z — y|| and A, = {z: d(X,A) <r}, r>0.

Proceed in this way: use the following theorem with f(x) = ed(“’A)Q/‘l’yn(ac), g9(x) = lpeayn(x) and
h(zx) = vy.

Theorem 0.1 (Prépoka-Leinder Inequality) If f and g and h are non-negative measurable func-
tions on R™ and A € (0,1) is such that, for all x and y in R,

h((1= XNz +Xy) > f(x)g(y),

/;h@ym::<Rnf@ym>kd</;g@ym)&

See Theorem 8.1 in: K. Ball, An elementary introduction to modern convex geometry, in: Flavors of
Geometry, pp. 158, Math. Sci. Res. Inst. Publ. Vol. 31, Cambridge Univ. Press, Cambridge, 1997.

then,

6. Bounds bounds bounds...
(a) Suppose that, for all € > 0,
P(|X]|>€) < cre” e,
where a € {1,2}. Show that
E[|X]] < esn /e
and express c3 as a function of ¢; and cs.

(b) (From Bernstein exponential inequality to high probability bounds). Suppose that, for all € > 0,
and some positive constants a, b, ¢ and d,

nbe>
P(X|>1t) < — .
(%1 2 1) < aexp {25}

Then show that, for any § € (0, 1),

c a d a
X|<4/—Ih=-+—In-=
XT < nbné—{_nbnd7

with probability at least 1 — 4.



7. Let X be distributed like a N, (0, I,,), where I, is the n-dimensional identity matrix. Show that, for
any € € (0,1)
P(||X]%—n|>¢) <e /8,

This results says that, in high dimensions, X is tightly concentrated around a sphere of radius y/n.
This may seem counterintuitive, since the density of X is maximal at 0 and decays exponentially fast
as we move away from the origin. So what’s going on? (Hint: think about the fact that most of the
volume of the ball in R™ of radius y/n concentrates around the sphere of radius y/n enclosing it...).

See, e.g., Lemma 2 in A Probabilistic Analysis of EM for Mixtures of Separated, Spherical Gaussians,
by S. Dasgupta and L. Schulman, JMLR, 8, 203-26, 2007.



