36-788, Fall 2015 Homework 3

Due Oct 15

1. (Configuration functions). Let Π be a property defined over the union of finite products of a set \mathcal{X} , that is, a sequence of sets

$$\Pi_1 \subset \mathcal{X}, \Pi_2 \subset \mathcal{X} \times \mathcal{X}, \dots, \Pi_n \subset \mathcal{X}^n.$$

The point $(x_1, \ldots, x_m) \in \mathcal{X}^m$ satisfies Π if $(x_1, \ldots, x_m) \in \Pi_m$. We also assume that Π is *hereditary* in the sense that if (x_1, \ldots, x_m) satisfies Π , then so does any sub-sequence x_{i_1}, \ldots, x_{i_k} of (x_1, \ldots, x_m) . The function f that maps any vector (x_1, \ldots, x_n) to the size of its largest sub-sequence satisfying Π is the *configuration functions* of Π . (Notice that, with some abuse of notation, f can take as input any n-tuple (x_1, \ldots, x_n) , for any n.) Show that the configuration function has the self-bounding property. This is Corollary 3.18 in BLM.

2. Let $\mathcal{X}^n = \mathcal{X}_1 \times \ldots \times \mathcal{X}_n$, where, for $i = 1, \ldots, n$, (\mathcal{X}_i, d_i) is a metric space with diameter D_i . Let $f: \mathcal{X}^n \to \mathbb{R}$ satisfy the Lipschitz condition

$$|f(x) - f(y)| \le \sum_{i=1}^{n} d_i(x_i, y_i),$$

for all $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ in \mathcal{X}^n . Let P be a product measure on \mathcal{X}^n and $X = (X_1, \ldots, X_n) \sim P$.

(a) Show that, for all x > 0,

$$\mathbb{P}\left(f(X) - \mathbb{E}[f(X)] > x\right) \le \exp\left\{-\frac{2x^2}{\sum_{i=1}^n D_i^2}\right\}.$$
(1)

(b) Show that

$$\mathbb{P}\left(f(X) - \mathbb{E}[f(X)] \ge \sum_{i=1}^{n} D_i\right) = 0.$$

This means (1) is off when x is large. For a sharpening of the bounded difference inequality for large x in metric spaces of bounded diameter, see: E. Rio, On McDiarmid's concentration inequality Emmanuel Rio, Electronic Communications in Probability, 18(44), 1-11.

(c) Let m_f be a median for f(x). Show that

$$\left|\mathbb{E}[f(X)] - m_f\right| \le \sqrt{\frac{\log 2}{2} \sum_{i=1}^n D_i^2}$$

(d) Define on \mathcal{X}^n the distance $d: (x, y) \to \sum_{i=1}^n d_i(x_i, y_i)$ and let $A \subset \mathcal{X}^n$ be measurable and such that P(A) > 0. For $x \in \mathcal{X}^n$, let

$$d(x, A) = \inf \left\{ d(x, y), y \in A \right\}$$

be the distance function from x to A. Show that, for $X \sim P$,

$$\mathbb{E}\left[d(X,A)\right] \le \sqrt{\frac{\log(1 \ P(A))}{2} \sum_{i=1}^{n} D_i^2},$$

and that

$$\mathbb{P}\left(d(X,A) \ge x + \sqrt{\frac{\log(1/P(A))}{2}\sum_{i=1}^n D_i^2}\right) \le \exp\left\{-\frac{2x^2}{\sum_{i=1}^n D_i^2}\right\}, \quad \forall x > 0.$$

Now consider the distance d given by the normalized Hamming metric:

$$d(x,y) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{x_i \neq y_i\}}$$

(In this case \mathcal{X}^n needs not be of bounded diameter). What happens to the previous bound? This is a classic result in the (older) literature on concentration of measure.