36-788 - Topics in High Dimensional Statistics I

Fall 2015

Lecture 12: Oct 08

Lecturer: Alessandro Rinaldo Scribes: Jisu KIM

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

12.1 Modified Logarithmic Sobolev Inequality

Proposition 12.1 Let $\phi(x) = e^x - x - 1$ for $x \in \mathbb{R}$ and $\lambda \in \mathbb{R}$, and let Z be an integrable random variable with $Z = f(X_1, \dots, X_n)$. Then,

$$Ent(e^{\lambda Z}) = \lambda \mathbb{E}\left[Ze^{\lambda Z}\right] - \mathbb{E}\left[e^{\lambda Z}\right] \log \mathbb{E}\left[e^{\lambda Z}\right]$$
$$\leq \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda Z}\phi(-\lambda(Z-Z_{i}))\right]$$

where each Z_i is an (arbitrary) function of $X^{(i)} = \{X_j, j \neq i\}$.

Proof: Based on sub-additivity of Ent, recall $(Y \ge 0 \text{ random variable})$

$$Ent(Y) \le \mathbb{E}\left[Y \log Y - Y \log \mu - (Y - \mu)\right]$$

² for any $\mu > 0$. Use this conditionally on $X^{(i)}$,

$$Ent^{(i)} \left[e^{\lambda Z} \right] \leq \mathbb{E}^{(i)} \left[e^{\lambda Z} \left(\log e^{\lambda Z} - \log e^{\lambda Z_i} \right) - \left(e^{\lambda Z} - e^{\lambda Z_i} \right) \right]$$
$$= \mathbb{E}^{(i)} \left[e^{\lambda Z} \phi(-\lambda (Z - Z_i)) \right]$$

where $\mathbb{E}^{(i)}$ is a conditional expectation given $X^{(i)}$. This is from plugging $Y \to e^{\lambda Z}$ and $\mu \to e^{\lambda Z_i}$ which is constant given $X^{(i)}$. Now use

$$Ent(e^{\lambda Z}) \le \sum_{i=1}^{n} \mathbb{E}\left(Ent^{(i)}\left[e^{\lambda Z}\right]\right)$$

to get result.

Application 1.

Let
$$Z = f(\underbrace{X_1, \cdots, X_n})$$
 be such that $\sum_{i=1}^n (Z - Z_i)^2 \le v^2$ a.s., where $Z_i = \inf_{x_i} f(X_1, \cdots, X_{i-1}, x_i, X_{i+1}, \cdots, X_n)$

 $(Z_i \text{ is measurable function of } X^{(i)}). \text{ Then } \forall t > 0,$

$$P\left(Z - \mathbb{E}[Z] \ge t\right) \le \exp\left\{-\frac{t^2}{2v^2}\right\},\,$$

¹Proposition 4 in [M2006], p. 6, Section 3.4 in [M2012], p. 9

²See formulation of entropy in Lecture 10(Oct 01)

12-2 Lecture 12: Oct 08

so Z has Gaussian tail with v^2 as variance factor.

Proof: $\phi(x) = e^x - x - 1$, and check $\phi(-x) \le \frac{x^2}{2} \ \forall x$. Then $\forall \lambda > 0$,

$$Ent(e^{\lambda Z}) \le \mathbb{E}\left[e^{\lambda Z} \sum_{i=1}^{n} \frac{\lambda^{2}}{2} (Z - Z_{i})^{2}\right]$$
$$\le \mathbb{E}\left[e^{\lambda Z}\right] \frac{\lambda^{2}}{2} v^{2}$$

Now use Herbst argument!³

Remark.

• By taking $Z_i = \sup_{x_i'} f(X_1, \dots, x_i', \dots, X_n)$, with condition $\sum_{i=1}^n (Z - Z_i)^2 \le v^2$ a.s., then $\forall t > 0$, $P(Z - \mathbb{E}[Z] \le -t) \le \exp\left\{-\frac{t^2}{2v^2}\right\}$, so

$$P(|Z - \mathbb{E}[Z]| \ge t) \le 2e^{-\frac{t^2}{2v^2}}$$

• For bounded difference inequality⁴,

$$\sum_{i=1}^{n} \sup_{x_1, \dots, x_n, x'_1, \dots, x'_n} \left(f(x_1, \dots, x_n) - f(x_1, \dots, x'_i, \dots, x_n) \right)^2 \le \frac{v^2}{4},$$

where sup is inside. For this inequality, we require

$$\sup_{x_1,\dots,x_n,x_1',\dots,x_n'} \sum_{i=1}^n \left(f(x_1,\dots,x_n) - f(x_1,\dots,x_i',\dots,x_n) \right)^2 \le v^2,$$

where sup is outside, so this condition is weaker.

• Let $A_{n \times n \text{ symmetric}} = (X_{i,j})_{1 \le i \le j \le n}$ be independent, $|X_{ij}| < 1$ a.s. Let $Z = \lambda_1$, i.e. largest eigenvalue of A. Then

$$\sum_{i,j} (Z - Z_{i,j})^2 \le 16,$$

where $Z_{i,j}$ is infimum of Z over i,j coordinate of A. Hence

$$P(\lambda_1 - \mathbb{E}[\lambda_1] \ge t) \le \exp\left\{-\frac{t^2}{32}\right\}.$$

This will be hard to obtain using McDiarmid⁵.

Application 2.

Let X_1, \dots, X_n independent, taking values in [0,1]. Let $f:[0,1]^n \to \mathbb{R}$ Lipschitz and separately convex. Set $Z = f(X_1, \dots, X_n)$. Then

$$P(Z - \mathbb{E}[Z] \ge t) \le \exp\left\{-\frac{t^2}{2}\right\}.$$

³See Lecture 10(Oct 01)

⁴See Lecture 10(Oct 01)

 $^{^5 \}mathrm{See}$ Lecture 10 (Oct 01)

Lecture 12: Oct 08 12-3

Proof: Assume partial derivatives exist. Let $Z_i = \inf_{x_i'} f(X_1, \dots, x_i', \dots, X_n)$ function of $X^{(i)}$. Let \tilde{X}_i (function of $X^{(i)}$) be the value of x_i' at which infimum is achieved. Then

$$\sum_{i=1}^{n} (Z - Z_i)^2 \le \sum_{i=1}^{n} \left[\frac{\partial f(X)}{\partial x_i} (X_i - \tilde{X}_i) \right]^2 \text{ (convexity)}$$

$$\le \sum_{i=1}^{n} \left[\frac{\partial f}{\partial x_i} (X) \right]^2 = \|\nabla f(X)\|^2$$

$$\le 1 \text{ (by Lipschitz assumption)}$$

Use theorem with $v^2 = 1$.

12.2 Self bounding functions

In following, $Z = f(X_1, \dots, X_n)$, and $h(\mu) = (1 + \mu) \log(1 + \mu) - \mu$ for $\mu \ge -1$, and $\phi(v) = e^v - v - 1 = \sup_{\mu \ge -1} \{\mu v - h(\mu)\}.$

Theorem 12.2 ⁶ If f has SBP^7 , $\forall \lambda \in \mathbb{R}$,

$$\log E\left[e^{\lambda(Z-\mathbb{E}[Z\})}\right] \le \phi(\lambda)\mathbb{E}\left[Z\right]$$

by Chernoff calculation, this implies then $\forall t \geq 0$,

$$P(Z - \mathbb{E}[Z] \ge t) \le \exp\left\{-h\left(\frac{t}{\mathbb{E}[Z]}\right)\mathbb{E}[Z]\right\}$$

and $\forall t \in (0, \mathbb{E}[Z]],$

$$P(Z \le \mathbb{E}[Z] - t) \le \exp\left\{-h\left(-\frac{t}{\mathbb{E}[Z]}\right)\mathbb{E}[Z]\right\}$$

which is same Chernoff bound as if $Z \sim Poisson$. Since

$$h(\mu) \ge \frac{\mu^2}{2 + \frac{2}{3}\mu}, \ \mu \ge 0$$

 $we \ get$

$$\begin{split} P\left(Z - \mathbb{E}[Z] \geq t\right) &\leq \exp\left\{-\frac{t^2}{2\mathbb{E}[Z] + \frac{2}{3}t}\right\} \\ P\left(Z \leq \mathbb{E}[Z] - t\right) &\leq \exp\left\{-\frac{t^2}{2\mathbb{E}[Z]}\right\} \\ 0 &< t < \mathbb{E}[Z] \end{split}$$

Remark. Think of chi square. Upper tail is thicker.

Proof: $\phi(x) = e^x - x - 1$, then notice that for $\mu \in (0,1)$ and $\lambda \in \mathbb{R}$,

$$\phi(-\lambda\mu) \le \mu\phi(-\lambda).$$

⁶Theorem 19 in [M2012], p. 18

 $^{^7 \}mathrm{See}$ Lecture 7(Sep 22) and Lecture 9(Sep 29)

12-4 Lecture 12: Oct 08

So, since $Z - Z_i \in [0, 1]$,

$$\phi(-\lambda(Z-Z_i)) \le (Z-Z_i)\phi(-\lambda).$$

By modified log sobolev inequality,

$$Ent(e^{\lambda Z}) \leq \mathbb{E}\left[e^{\lambda Z} \sum_{i=1}^{n} \phi\left(-\lambda(Z-Z_{i})\right)\right]$$

$$\leq \mathbb{E}\left[e^{\lambda Z} \phi(-\lambda) \sum_{i=1}^{n} (Z-Z_{i})\right]$$

$$\leq \phi(-\lambda) \mathbb{E}\left[e^{\lambda Z} Z\right]$$

Rest of the proof is boring calculus.

Example.

- 1. Let $\mathbb{G}(n,p)$ be an Erdős-Rényi random graph, i.e. edge between node i and j is $X_{ij} \sim Bernoulli(p)$ independently. Let d_i degree on node i. Then $d_i \sim Bin(n-1,p)$, and $D = \max_i d_i = f(X_{i,j}, i < j)$ satisfies SBP.
- 2. Conditional Rademacher averages. Let $Z = \mathbb{E}\left[\sup_{t \in T} \sum_{i=1}^{n} \epsilon_{i} x_{i,t}\right]$, where $x_{i} \in [0,1]^{T}$, $x_{i,t}$ t-component of x_{i} , and $\epsilon_{1}, \dots, \epsilon_{n} \stackrel{iid}{\sim} \text{Rademacher}$. Then Z has SBP. (Homework)

12.3 Exponential Efron Stein inequality

Efron-Stein inequality states $V[Z] \leq V[V_+] = V[V_-]$, where $V_+ = \sum_{i=1}^n \mathbb{E}\left[(Z - Z_i')_+^2\right]$ and $V_- = \sum_{i=1}^n \mathbb{E}\left[(Z - Z_i')_-^2\right]$.

Theorem 12.3 8 Let $\theta, \lambda > 0$ such that $\lambda \theta > 1$. Assume $\mathbb{E}\left[e^{\frac{\lambda V_{\pm}}{\theta}}\right] < \infty$. Then

$$\log \mathbb{E}\left[e^{\lambda(Z-\mathbb{E}[Z])}\right] \leq \frac{\lambda \theta}{1-\lambda \theta} \mathbb{E}\left[e^{\frac{\lambda V_{+}}{\theta}}\right]$$

and

$$\log \mathbb{E}\left[e^{\lambda(Z - \mathbb{E}[Z])}\right] \leq \frac{\lambda \theta}{1 - \lambda \theta} \mathbb{E}\left[e^{\frac{\lambda V_{-}}{\theta}}\right].$$

Applications

1. 9 If $V_+, V_- \leq c$ a.e. for some c > 0, then

$$P(|Z - \mathbb{E}[Z]| \ge t) \le \exp\left\{-\frac{t^2}{4c}\right\}.$$

 $^{^8\}mathrm{Theorem~2}$ in [BLM2003], p. 1585

 $^{^9\}mathrm{Corollary}$ 3 in [BLM2003], p. 1585-1586

Lecture 12: Oct 08 12-5

- 2. ¹⁰ If $V_{+} \leq aZ + b$, then nice exponential inequality.
- 3. Weakly (a, b) SB(self bounding) functions(weakening of SBP):

$$\sum_{i=1}^{n} (Z - Z_i)^2 \le aZ + b, \ a, b \ge 0$$

then still nice exponential inequality.

Reference

- [BLM2003] S. Boucheron and G. Lugosi and P. Massart: Concentration inequalities using the entropy method (2003), Annals of Probability, 31, 1583-1614.
 - [M2006] Maurer, A. (2006). Concentration inequalities for functions of independent variables. Random Structures & Algorithms, 29, 121138.
 - [M2012] A. Maurer (2012). Thermodynamics and concentration, Bernoulli, 18(2), 434-454.

 $^{^{10}\}mathrm{Theorem}$ 5 in [BLM2003], p. 1587