36-788 — Topics in High Dimensional Statistics I Fall 2015

Lecture 12: Oct 08
Lecturer: Alessandro Rinaldo Scribes: Jisu KIM

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

12.1 Modified Logarithmic Sobolev Inequality

Proposition 12.1 ! Let ¢p(z) = e*—x—1 forx € R and A € R, and let Z be an integrable random variable
indep

—
with Z = f(X1, -+ ,Xn). Then,

Ent(e*) = AE [Ze*] — E [e*] 1ogE [e*]
Z (M (=NZ — Z)))]
where each Z; is an (arbitrary) function of X = {X;, j #i}.

Proof: Based on sub-additivity of Ent, recall (Y > 0 random variable)
Ent(Y)<E[YlogY —Ylogu— (Y — )]
2 for any p > 0. Use this conditionally on X,
Ent® [GAZ] <E® [eAZ (log A _log e’\Zi) — (e} - e)\Z,i)]
=EY [Mo(-A(Z - Z))]

where E() is a conditional expectation given X (). This is from plugging Y — e*? and p — e*% which is

constant given X (@, Now use
Ent(e Z (Ent ’) ])

to get result. |

Application 1.

Let Z = f(Xl, cee 7Xn) be such that Z(Z*Zl)Z S U2 a.s., where Zl = lIlff (Xl, s ,Xi_l, Ty, Xz'—‘—l, cee ,Xn)
N—— i=1 T
indep

(Z; is measurable function of X ). Then V¢ > 0,

P(Z-F[Z)21) < exp{—;;},

IProposition 4 in [M2006], p. 6, Section 3.4 in [M2012], p. 9
2See formulation of entropy in Lecture 10(Oct 01)
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so Z has Gaussian tail with v? as variance factor.

Proof: ¢(x) =e® —x — 1, and check ¢(—z) < 12—2 Vz. Then VA > 0,

Ent(e’) <E

n )\2
)\ZE 2
5 — 4
e £ 2 (Z Z )

<F AZ71 22
< E [e*] 5V
Now use Herbst argument!? [
Remark.
e By taking Z; = supf(Xy,---,2}, -+, X,), with condition > (Z — Z;)? < v? a.s., then Vt > 0,
) i=1

i

P(Z-E[Z] < 1) < exp{—%} , 50

2

P(Z—E[Z]| > t) < 2¢ 37,

e For bounded difference inequality?,

n 2

Z sup (f(irl»"'axn)_f(xl""7x;7"'7xn))2§

)
’ ’
=1 T1, T, T, T, 4

where sup is inside. For this inequality, we require

n

sup Z(f(xb axn)_f($17"' 7:1;;‘"" 7.'1/'”))2 §U27

Ty, 71371713/17"' 71’;7,1':1
where sup is outside, so this condition is weaker.

e Let A = (X, j)1<i<j<n be independent, | X;;| < 1 a.s. Let Z = Ay, i.e. largest eigenvalue of

nXn symmetric

A. Then
> (Z - 2;;)* <16,

]

where Z; ; is infimum of Z over i, j coordinate of A. Hence

P\ —EM]>t) < exp{éi}.

This will be hard to obtain using McDiarmid®.

Application 2.

Let X3,---, X, independent, taking values in [0, 1]. Let f : [0,1]" — R Lipschitz and separately convex. Set
Z = f(X1, -+ ,X,). Then

P(Z-E[Z] >t) < exp{—t;}.

3See Lecture 10(Oct 01)
4See Lecture 10(Oct 01)
5See Lecture 10(Oct 01)



Lecture 12: Oct 08 12-3
Proof: Assume partial derivatives exist. Let Z; = in{ff(Xl7 oo wh oo X)) function of X, Let X;
(function of X () be the value of o} at which infimum is achieved. Then
n n OF(X 5 2
Z(Z - Zi)* < Z { {;;Z )(Xi - Xi):| (convexity)
=1 =1
n (9f 2
<> | L] =ivseor
=1 Lo
<1 (by Lipschitz assumption)
Use theorem with v? = 1. ]

12.2 Self bounding functions

In following, Z = f(X1, -+ ,Xn), and h(p) = (1 + p)log(l + p) — p for p > —1, and ¢(v) = e* —v —1 =
——

indep

sup. {pv —nh(p)}.

Theorem 12.2 ¢ If f has SBP7, VA € R,
log B2 [X(#~E12D)] < 9(\E[Z]
by Chernoff calculation, this implies then ¥Vt > 0,
P(Z—E[Z] > t) < exp {—h (t) E[Z]}
and ¥Vt € (0,E[Z]],

P(Z <E[Z]—t) < exp {—h <—EFZ]> E[Z]}

which is same Chernoff bound as if Z ~Poisson. Since

2+ 2p
we get
2
P(Z—-E[Z] > 1) < eXp{QE[Zt] - Qt}
3
P(ZgE[Z}—t)gexp{—QI;TZ]} 0<t<E[Z]

Remark. Think of chi square. Upper tail is thicker.
Proof: ¢(x) =e® —x — 1, then notice that for p € (0,1) and X € R,

P(=An) < pp(=A).

6Theorem 19 in [M2012], p. 18
"See Lecture 7(Sep 22) and Lecture 9(Sep 29)
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So, since Z — Z; € [0,1],
A(=AZ = Zi)) <(Z = Zi)d(=A).

By modified log sobolev inequality,

Ent(e*) <E ekzzn:qb(—)\(Z — 7))

Rest of the proof is boring calculus. [ |

Example.

1. Let G(n,p) be an Erd6s-Rényi random graph, i.e. edge between node ¢ and j is X;; ~ Bernoulli(p)
independently. Let d; degree on node i¢. Then d; ~ Bin(n — 1,p), and D = maxd; = f(X;;,i < j)

satisfies SBP.

n
2. Conditional Rademacher averages. Let Z = E [supZeixm}, where z; € [0,1]7, 2;, t-component of
teTi=1

z;, and €1, -+ €, “YRademacher. Then Z has SBP. (Homework)

12.3 Exponential Efron Stein inequality

Efron-Stein inequality states V[Z] < V[V,] = V[V_], where V; = Y E [(Z — Z))%] and V_ = S E [(Z — Z})?].
; =1

=1 %

Theorem 12.3 8 Let 8, )\ > 0 such that \§ > 1. Assume E {e#} < 00. Then

logE [e’\(Z_E[Z])} < A0 E {e%}

and

logE {GA(Zf]E[Z])} < A0 E {exxg,} .
Applications
1. 9If V,,V_ < c a.e. for some ¢ > 0, then

P(Z - E[Z]| > 1) < xp{i}

8Theorem 2 in [BLM2003], p. 1585
9Corollary 3 in [BLM2003], p. 1585-1586
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2. 19 If V, < aZ +b, then nice exponential inequality.

3. Weakly (a,b) SB(self bounding) functions(weakening of SBP):

Y (Z-27)*<aZ+b, a,b>0

i=1

then still nice exponential inequality.
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