
36-788: Topics in High Dimensional Statistics I Fall 2015

Lecture 9: September 29
Lecturer: Alessandro Rinaldo Scribe: Shashank Singh

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

9.1 Recap and Outline

Last time, we stated and proved the Efron-Stein Inequality:

Theorem 9.1 (Efron-Stein Inequality): Let X1, . . . , Xn be independent random variables, let Z =
f (X1, . . . , Xn) for some real-valued function f , and suppose E

[
Z2
]
<∞. Then,

Var [Z] = inf
Z1,...,Zn

n∑
i=1

E
[
(Z − Zi)2

]
,

where, for each i ∈ {1, . . . , n}, Zi is a function of X1, . . . , Xi−1, Xi+1, . . . , Xn with E
[
Z2
i

]
<∞.

We also applied the Efron-Stein Inequality to bound variances in a few examples:

1. Functions with the bounded difference property (BDP).

2. Kernel density estimates (at a point) in R.

3. Worst-case empirical probability of a family of events (e.g., cumulative distribution functions).

Today, we begin with another class of functions, self-bounded functions, for which the Efron-Stein Inequality
gives strong variance bounds. We then switch topics to discuss some general tools for deriving exponential
concentration inequalities. In particular, we briefly discuss martingale methods (namely, Azuma’s Inequal-
ity), before moving on to outline entropy methods.

9.2 Self-Bounding Functions

Definition 9.2 (Self Bounding Property) Let X1, . . . ,Xn be sets, let X := X1 × · · · × Xn, and, for each
i ∈ {1, . . . , n}, let X (i) := X1 × · · · × Xi−1 × Xi+1 × · · · × Xn. A function f : X → R is said to have the
self-bounding property (SBP) if there exist functions fi : X(i) → R such that, ∀x ∈ X ,

SBP(a): 0 ≤ f(x)− fi(x(i)) ≤ 1, ∀i ∈ {1, . . . , n}

SBP(b):
∑n
i=1 f(x)− fi(x(i)) ≤ f(x).
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The Efron-Stein inequality gives the following strong variance bound on the value of a self-bounding function:

Lemma 9.3 Let X1, . . . ,Xn be independent random variables taking values in X1, . . . , Xn, respectively, and
let Z := f (X1, . . . , Xn). If f has the SBP, then Var [Z] ≤ E [Z].

For this and other reasons 1, when f has the SBP, Z can be compared to a Poisson random variable.

Proof: Applying the Efron-Stein inequality, SBP(a), and SBP(b) (in that order),

Var [Z] ≤ E

[
n∑
i=1

(
f(X)− fi

(
X(i)

))2
]
≤ E

[
n∑
i=1

f(X)− fi
(
X(i)

)]
≤ E [f(X)] = E [Z] .

At this point, the SBP appears to be a rather artificial property defined for the purpose of proving the above
bound. We now go on to give a few examples of interesting functions exhibiting the SBP. One such class is
given by so-called configuration functions.

Definition 9.4 (Configuration Function) Let X be a set, let Π1 ⊆ X 1, . . . ,Πn ⊆ Xn, and let Π :=⋃n
i=1 Πi. The configuration function fΠ : Xn → N of Π gives the length of the longest subsequence in Π:

fΠ(x1, . . . , xn) = max {k ∈ N : ∃i1 ≤ · · · ≤ ik ∈ {1, . . . , n} s.t. (xi1 , . . . , xik) ∈ Π} .

Lemma 9.5 Suppose Π ⊆
⋃n
i=1 Xn is hereditary in the sense that, if X ∈ Π, then any subsequence of X is

is Π. If fΠ is the configuration function of Π, then f is self-bounding, and hence, if X1, . . . , Xn are drawn
independently from X , then

Var [f(X)] ≤ E [f(X)] .

Proof: For each ` ∈ {1, . . . , n}, let

f`(x1, . . . , xn) = max {k ∈ N : ∃i1 ≤ · · · ≤ ik ∈ {1, . . . , n}\{`} s.t. (xi1 , . . . , xik) ∈ Π} .

denote the length of the longest subsequence in Π not including x`. For each ` ∈ {1, . . . , n}, since Π is
hereditary, f`(x) = fΠ(x) − 1 if every length-fΠ(x) subsequence of x in Π contains xi, and f`(x) = fΠ(x)
otherwise. Both SBP(a) and SBP(b) follow immediately.

Example: Suppose X is countable and (X1, . . . , Xn) is drawn from a product distribution Pn on Xn, then
fΠ (X1, . . . , Xn) := |{X1, . . . , Xn}| is a configuration function, where X ∈ Π precisely when X contains
only distinct elements. Since changing a single coordinate of x changes f by at most 1, f has the bounded
difference property (BDP), and so Var [f(X)] ≤ n

4 . On the other hand, note that, ∀x ∈ Xn,

fΠ(x) =

n∑
i=1

1{xi /∈{x1,...,xi−1}},

and so, letting pj := P [Xi = j] for each j ∈ X ,

E [fΠ(X)] =

n∑
i=1

∑
j∈X

(1− pj)i−1
pj ∈ o(n).

Hence, in this case, the SBP implies a stronger bound than does the BDP.

1e.g., Z satisfies the sub-Poissonian inequality logE
[
eλ(Z−E[Z])

]
≤

(
eλ − λ− 1

)
E [Z]. See, e.g., [BLM09] for details.
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9.3 Martingale Methods for Deriving Concentration Inequalities

The concentration inequalities we have discussed so far all assume strict independence of the underlying
sequence of random variables. Martingale methods allow us to weaken this slightly. Under these weaker
assumptions, we will prove an exponential concentration inequality for a sum of bounded random variables
(Azuma’s Inequality).

Definition 9.6 (Filtration, Martingale) Let (Ω,F ,P) be a probability space over which {Xi}∞i=1 is a se-
quence of real-valued random variables, and let {F}∞i=1 be a sequence of σ-fields increasing to F (a filtration)
on Ω. Then, {(Xi,Fi)}∞i=1 is a martingale if the following hold, ∀i ∈ N:

1. Xi is Fi measurable.

2. E [|Xi|] <∞.

3. E [Xi+1|Xi] = Xi.

For notational convenience, we will often omit the filtration and simply refer to {Xi}∞i=1 as a martingale.
Also, when we refer to a finite sequence {(Xi,Fi)}ni=1 as a martingale, the above definition is intended with
Xn = Xn+1 = Xn+2 = · · · and Fn = Fn+1 = Fn+2 = · · · .

Examples:

1. Suppose Y1, Y2, . . . , are independent and integrable. If, for each i ∈ N, Xi =
∑∞
i=1 Yi − E [Yi], then

{(Xi, σ (Y1, . . . , Yi))}∞i=1 and {(Xi/i, σ (Y1, . . . , Yi))}∞i=1 are martingales.

2. If X is integrable and {Fi}∞i=1 is a filtration, then {(E [X|Fi] ,Fi)}∞i=1 is a martingale.

3. If f : Xn → R is integrable and {Xi}ni=1 is a sequence of X -valued random variables, then

{(E [f (X1, . . . , Xn)|X1, . . . , Xi] , σ (X1, . . . , Xi))}ni=1

is a martingale (referred to as the Doob martingale of f).

Note that, by the Law of Iterated Expectation, for each i ∈ N,

E [Xi+1] = E [E [Xi+1|Xi]] = E [Xi] = · · · = E [X1] .

Hence, for convenience, we define X0 := E [X1]. Then, for martingales with bounded difference between
terms, we can prove the following exponential concentration inequality:

Theorem 9.7 (Azuma’s Inequality) Suppose {Xi}∞i=1 is a martingale, and suppose there exists a real-
valued sequence {ci}∞i=1 such that, almost surely, each |Xi −Xi−1| < ci. Then, ∀n ∈ N, t > 0,

P [|Xn −X0| > t] ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
.
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Proof: We first bound the moment generating function. For any λ > 0, by the Law of Iterated Expectation,

E

[
exp

(
λ

n∑
i=1

Xi −Xi−1

)]
= E

[
exp

(
λ

n−1∑
i=1

Xi −Xi−1

)
E
[
eλ(Xn−Xn−1)

∣∣∣X1, . . . , Xn−1

]]

≤ E

[
exp

(
λ

n−1∑
i=1

Xi −Xi−1

)]
exp

(
λ2c2n

8

)
.

where we used Hoeffding’s Lemma, conditionally given X1, . . . , Xn−1. 2 Expanding this recurrence gives

E

[
exp

(
λ

n∑
i=1

Xi −Xi−1

)]
≤ exp

(
λ2
∑n
i=1 c

2
i

8

)
(9.1)

We now follow the usual Chernoff technique. ∀λ > 0, expanding the telescoping sum and applying (9.1),

P [Xn −X0 > t] = P

[
n∑
i=1

Xi −Xi−1 > t

]
≤ e−λtE

[
exp

(
λ

n∑
i=1

Xi −Xi−1

)]
≤ exp

(
−λt+

λ2
∑n
i=1 c

2
i

8

)
.

The exponent is convex in λ, and is easily minimized via calculus. Doing so gives λ = 4t∑n
i=1 c

2
i
, and so

P [Xn −X0 > t] ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

Plugging in −X0, . . . ,−Xn gives the corresponding left tail bound, and a union bound finishes the proof.

Applying Azuma’s Inequality to a Doob martingale gives the widely used McDiarmid’s Inequality [M89],
also known as the Method of Bounded Differences:

Corollary 9.8 (McDiarmid’s Inequality) If X1, . . . , Xn are independent X -valued random variables and
f : Xn → R satisfies the bounded difference property with constants c1, . . . , cn, then, ∀t > 0,

P [|f (X1, . . . , Xn)− E [f (X1, . . . , Xn)| > t]] ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
.

9.3.1 Improvements to Azuma’s Inequality

See [CL06] and chapter 2 of [RS14] for surveys of martingale methods for deriving concentration inequalities.

Azuma’s and McDiarmid’s Inequalities are both easy to prove and widely applicable, resulting in many
refinements and generalizations. If we can bound the quadratic variation of the martingale in question, we
can derive a martingale analogue of Bernstein’s Inequality. [R13] observes that McDiarmid’s Inequality is
loose for large t (e.g., on the order of the diameter of the underlying metric space) and provides tighter bounds
for this regime. [K14] weakens the bounded difference assumption to a bounded sub-Gaussian diameter
assumption. Finally, [S11] gives some refinements of Azuma’s Inequality in terms of information-theoretic
quantities.

2Hoeffding’s Lemma states that, if a random variable X satisfies E [X] = 0 and |X| ≤ c a.s. for some c ∈ R, then, ∀λ ∈ R,
E
[
eλX

]
≤ exp

(
λ2c2/8

)
. The proof follows from convexity of x 7→ eλx, Jensen’s Inequality, and a 2nd order Taylor bound.
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9.4 Entropy Methods for Deriving Concentration Inequalities

Entropy methods are a recent innovation (developed in the last 15 years), which tend to give very sharp
concentration bounds, but rely on some highly non-trivial technical results. They rely on two steps to bound
the log moment generating function:

1. Tensorization (sub-additivity) of entropy: decompose the entropy of the random variable into contri-
butions of each coordinate (e.g., the Efron-Stein Inequality does this for variance instead of entropy).

2. Herbst’s Argument: Re-express the entropy bound as a differential inequality, which can be implicitly
solved via Taylor expansion to give concentration bounds.

Next time, after defining entropy and divergence and proving several technical lemmas, we will flesh out this
approach and use it to prove actual concentration inequalities.
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