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1.1 Introduction

homepage : http://www.stat.cmu.edu/˜arinaldo/36788

This course covers Concentration inequalities and how they work.

Concentration inequalities were initially studied in Functional Analysis, in particular in the Geometry of
Banach spaces. Concentration inequalities also have a lot of applications in Computer Science and Dis-
crete Math. In particular, they are important in the study Randomized Algorithms and Combinatorial
Optimization. They are also important in Statistics and Machine Learning.

1.2 Parametric Statistics

Let P = {Pθ : θ ∈ Θ ⊂ Rd} with d fixed. Pθ takes values on (Rn,Bn).

Observe X1, · · · , Xn
iid∼ Pθn with θn ∈ Θ. Parametric estimator is as θ̂n = θ̂n(X1, · · · , Xn).

1.2.1 Tools

1) WLLN

∀ε > 0, lim
n→∞

P
(
d(θ̂n, θ

n) > ε
)

= 0

2) CLT

An︸︷︷︸
seq of scaling matrices

(
X̄n − µn

)
 Nd(0, I)

More generallly,

An

(
θ̂n − µn

)
 Nd(0, I).

Especially, if X1, · · · , Xn
iid∼ (µ,Σ),
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√
n
(
X̄n − µ

)
 Nd(0,Σ).

3) Aside: Berry Esseen Bound

If d = 1: if X1, · · · , Xn
iid∼ (µ, σ2) and such that E|X1 − µ|3 <∞, then

sup
x∈R

∣∣∣∣∣∣∣∣∣∣
P

(√
n(X̄n − µ)

σ
≤ x

)
︸ ︷︷ ︸

cdf of
√
n(X̄n−µ)

σ

− Φ(x)︸ ︷︷ ︸
cdf of N(0,1)

∣∣∣∣∣∣∣∣∣∣
≤ C(µ, σ2)√

n
.

This is refinement of CLT: it is finite sample result.

If d > 1, C will depend on d. The optimal const is still not known. Especially requires d < n to hold. 1

1.2.2 Issues

1) Asymptotic Results

Asymptotic results may not necessarily hold under finite n. We want Sample Complexity guarantees, which

is to fix ε > 0, and find smallest n(ε) s.t. ∀n > n(ε), E
[
d(θ̂n − θn)

]
≤ ε.

2) They require d fixed.

d does not change with n. Issue 2 in particular is problematic in high dimensional statistical models!

1.3 High dimensional statistics

Definition 1.1 High dimensional statistical model is a sequence {Pk}k of parametric models, where Pk =
{Pθ, θ ∈ Θ ⊂ Rdk} and dk increases as k increases.

We observe iid samples X1, · · · , Xn ∼ Pθk , where Pθk ∈ Pk. We take k = n (or k = k(n) increasing in n
will be enough).

Example. (X1, Y1), ..., (Xn, Yn) ∼ Pθ with θ ∈ Rdk . The model is parametrized as

Yi =< Xi, θ > +εi.

1.3.1 Regimes of Complexity

1) dn →∞ as n→∞ but dn = o(n). This is more classic and we try not to make assumptions.

2) dn � n: require structural assumption(sparsity).

Concentration inequalities can handle both cases. They provide finite sample bounds (n remains finite) in
which the dimension is often an explicit parameter.

1Theorem 14 and Theorem 16 in [WKR2014], p.1202-1205, Theorem 1.1 in [B2003], p.385-387, [P1986], p.571-572
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1.3.2 General form of concentration inequalities

Let X = (X1, · · · , Xn)
iid∼ P and X ∈ X . Let f : X → R that is “smooth” (or 1 Lipschitz2). Then, the

bounds we are after are of the form

∀ε > 0, P (|f(x)− E[f(x)]| > ε) ≤ g(ε, n)

where g(ε, n)→ 0 as n→∞ “fast”, typically g(ε, n) = C1 exp
{
−nε2C2

}
.

For any 1-Liptschitz f , typically, f(X1, · · · , Xn) =
n∑
i=1

Xi

Example. Covariance estimation in L∞.

X1, · · · , Xn
iid∼ P in Rd, satisfying sub-Gaussianity condition3(a critical regularity condition). Let Σ be

Cov[X1], Σ̂n = 1
n

n∑
i=1

(Xi− X̄n)(Xi− X̄n)T be the empirical covariance matrix with X̄n = 1
n

∑
Xi. Then ∃C

s.t.

∀t > 0, ‖Σ̂n − Σ‖∞ ≤ c
√
t+ log d

n
with prob ≥ 1− e−t,

where ‖A∞‖ = max
i,j
|Ai,j |. Especially, take t = log n,

‖Σ̂n − Σ‖∞ = O

(
max

{√
log n

n
,

√
log d

n

})
→ 0

even if d� n, with prob≥ 1− 1
n .

Example.

- Compressed sensing 4

- Performance of Lasso 5

Example. Let vn be the volume of unit ball in Rn. Then volume of a ball of radius (1− ε) , ε > 0 small, is
(1− ε)nvn. By taking ratio,

(1− ε)nvn
vn

→ 0

fast, for any ε > 0. So as n→∞, most of mass is on the boundary, for uniform distribution.

Example. If X = X1, · · · , Xn
iid∼ N(0, I), then the norm ‖X‖ will be highly concentrated on ≈

√
n. 6

Example. Let X be uniformly distributed on {0, 1}n(hypercube), and dH(x, y) = 1
n |{i : xi 6= yi}| be the

distance onthe hypercube. Then, for any f 1−Liptshitz ,

P (f(X) ≥ E[f(X)] + r) ≤ e−nr
2

2 .

Take a subset A ⊂ {0, 1}n with P (A) ≥ 1
2 , and enlarge A a little by Ar = {x ∈X : d(x,A) < r} , as in

Figure 1.1. Then

P (Acr) ≤ e−nr
2c.

r ∼ 1√
n

is enough for Ar to capture almost all mass. 7

2f is1-Lipschitz if |f(x)− f(y)| ≤ d(x, y). Refer to 2nd lecture.
3X is sub-Gaussian if ∃ν s.t. ∀λ, log

(
E

[
eλX

])
≤ λ2ν2

2
. Refer to lecture 3.

4Theorem 5.2 in [BDDW20007]
5Theorem 1 in [W2009]
6Proposition 2.2, Corollary 2.3 in [B2005], p.5-8
7Theorem 2.11 in [L2005], p.3, p.31, Corollary 4.4 in [B2005], p.17
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A Ar

r

Figure 1.1: A and Ar = {x ∈X : d(x,A) < r}
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