
36-788: Topics in High Dimensional Statistics I Fall 2015

Lecture 2: September 3
Lecturer: Alessandro Rinaldo Scribes: Jisu KIM

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

This lecture’s notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

2.1 Concentration

Let (X , d) be a metric space and P be a probability on (X , d), Let A ⊂ X be such that P (A) ≥ 1
2 . Let

Ar = {x ∈ X : d(x,A) < r} as in Figure 2.1, where d(x,A) = inf
y∈A

d(x, y). A way to look at concentration

of measure is to let r grow and look at P (Acr).

A Ar

r

Figure 2.1: A and Ar = {x ∈X : d(x,A) < r}

Definition 2.1 The concentration function α = α(X , d, P ) : R+ → [0, 1] is defined as 1

α(r) = sup
A⊂X s.t. P (A)≥ 1

2

P (Acr).

Question: How fast does α(r) decrease?

Definition 2.2 A space (X , d) with prob P has normal concentration if 2

α(r) ≤ Ce−cr
2

.

1[L2005], p.3
2[L2005], p.4
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Gaussian satisfies normal concentration.

Example. 1) Let X = Sn = {x ∈ Rn+1, ‖x‖ = 1}(sphere) with d(x, y) = arc cos < x, y >(angular
distance), and P is uniform. Then 3

α(r) ≤ e−(n−1)r
2/2.

So when n is large, P (Ar) ≈ 1 for small r. And P -almost of Sn are within distance 1√
n

from A.

Example. 2) Let X = {0, 1}n(unit cube) with d(x, y) = 1
n |{i : xi 6= yi}|(hamming distance), and P is

uniform. Then 4

α(r) ≤ e−2nr
2

.

Example. 3) Let X =unit ball in Rn with euclidean distance, and P is uniform. Then 5

α(r) ≤ e−cnr
2

Example. 4) Many many product spaces 6

Example. 5) Let X =set of all permutations on n elements with d(σ, τ) = 1
n |{i : σi 6= τi}|, and P is

uniform. Then it has normal concentration, with c depends on n. 7

Example. 6) Let P a probability on (Rn,Bn) with density of the form e−U(x), where U(x) + U(y) −
2U
(
x+y
2

)
≥ c‖x−y‖2

4 , with ‖ · ‖: Euclidean form. (log-concave density. Nn(0, I) satisfies this with c = 1)
Then 8

α(r) ≤ 2e−cr
2/4.

Bound doesn’t depend on n: This is how people go to infinite dimension. 9

2.2 Connection to 1 Liptschitz function

Let (X , d) be a metric space and P be a probability on (X , d).

Definition 2.3 f : X → R is called 1-Lipschitz if

|f(x)− f(y)| ≤ d(x, y).

Definition 2.4 Let mf be median of f if 10

P (f(X) ≤ mf ) ≥ 1

2
and P (f(X) ≥ mf ) ≥ 1

2
.

• Concentration of 1-Liptschitz function =⇒ Concentration of probability

Pick A ⊂X and let
f(x) = d(x,A).

3Theorem 2.3 in [L2005], vii, p.1-2, p.26, Theorem 14.3 in [B2005], p.3-4, p.59-60, Theorem 1 in [BN2009], p.5
4Theorem 2.11 in [L2005], p.3, p.31, Corollary 4.4 in [B2005], p.17
5Proposition 2.9 in [L2005], p.30
6Chapter 4. Concentration in product spaces in [L2005], p.67-90
7Theorem 8.10 in [L2005], p.159
8Theorem 2.15 in [L2005], p.36
9Theorem 7.1 in [L2005], p.133-134

10[L2005], p.5, [B2005], p.3
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Then f is 1-Lipschitz (Exercise!). Now assume P (A) ≥ 1
2 and X ∼ P . Then

Pr(f(X) = 0) = P (A) ≥ 1

2
.

This implies 0 is a median of f(x) = d(x,A). So

P (Acr) = Pr (f(X)−mf ≥ r) ≤ α(r),

where α(r) is a concentration function.

• Concentration of probability =⇒ Concentration of 1-Liptschitz function

Let f be a 1-Lipschitz function and let

A = {x ∈X : f(x) ≤ mf} .

Then P (A) ≥ 1
2 , and

∀r > 0, Ar ⊂ {x ∈X : f(x) < mf + r} (: exercise).

Therefore,
Pr (f(X)−mf ≥ r) ≤ P (Acr) ≤ α(r).

Theorem 2.5 A Borel space (X , d) with probability P has concentration function α iff for every 1-Liptschitz
function f and for every r > 0, 11

P (f(X) ≥ mf + r) ≤ α(r).

Apply this to −f , we have
P (|f(X)−mf | ≥ r) ≤ 2α(r).

2.2.1 Extensions

• You can always replace mf with E [f(X)] with different constants C and c in α. 12

• E [f(X)]−mf is small

• If there is a normal concentration, then 13

V [f(X)] ≤ C

c
,

and there exists K(C) such that for any q ≥ 1, 14

(E |f(X)− E [f(X)]|q)
1
q ≤ K

√
q

c
.

(very similar behavior as Gaussian)

• Gaussian measure in Rn. Let X = (X1, · · · , Xn) ∼ Nn (0, I) and f is 1-Lipschitz. Then 15

P (|f(X)− E[f(X)]| > r) ≤ 2e−
r2

2 .

for all n! (dimension free).

11Proposition 1.3 in [L2005], p. 7
12Proposition 1.7 in [L2005], p. 9-10
13Proposition 1.9 in [L2005], p. 11-12
14Proposition 1.10 in [L2005], p. 12-13
15Corollary 2.6 in [L2005], p. 2, p. 28-29, Theorem 14.6 in [B2005], p.61, Proposition 1 and Theorem 10 in [BN2009], p.9-10,

p.32-33, p.40-42
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• Moreover, there exists g 1-Lipschitz and Z ∼ N(0, 1) such that

f( X︸︷︷︸
high dim

)
d
= g( Z︸︷︷︸

1 dim

).

End of interesting materials.

2.3 Chernoff inequality

2.3.1 Jensen inequality

Let f : R→ R be convex on −∞ ≤ a < b ≤ +∞ and X random variable supported on subset of (a, b), then

f (E [X]) ≤ E [f(X)] .

(= holds if X = c a.s. for some c)

if f is concave, reverse inequality holds.

2.3.2 Markov’s inequality

Let f : R+ → R be non-decreasing, and X be a random variable, then

P (|X| > r) ≤ E [f (|X|)]
f(r)

.

2.3.3 Chernoff-bounds

Let X1, · · · , Xn be independent random variables, and let Z = f(X1, · · · , Xn). We are interested in bounding
P (Z − E[Z] > r), P (Z − E[Z] < −r), P (|Z − E[Z]| > r). We would like bounds that

1. are analytically simple,

2. apply to general random variables,

3. are sharp.

Theorem 2.6
P (Z ≥ x) ≤ exp {ψ∗Z(x)} ,

with
ψ∗Z(x) = sup

λ>0
{λx− ψZ(λ)}.

Example. Let X = (X1, · · · , Xn)
iid∼ P , with E [X1] = µ and V [X1] = σ2. Let f(X) = X̄n. Then

P
(∣∣X̄n − µ

∣∣ > r
)
≤ σ2

nr2
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by Chebyshev. But we should be able to do better: by Central Limit Theorem,

√
n
(
X̄n − µ

)
 N

(
0, σ2

)
,

so

lim
n→∞

P

(√
n

σ2

(
X̄n − µ

)
> r

)
→ 1− Φ(r) ≤ e−r

2/2,

where Φ(r) is cdf of N(0, 1). So as n→∞,

P (|Xn − µ| > r) ≤ 2e−
nr2

2σ2 .

Proof:

Step 1

for x ∈ R and ∀λ > 0,

P (Z ≥ x) = P
(
eλZ ≥ eλx

)
≤
E
[
eλZ

]
eλx

(markov inequality)

= exp {ψZ(λ)− λx} ,

ψZ(λ) = log

E [eλZ]︸ ︷︷ ︸
mgf


 .

Step 2

Minimize the RHS with respect to λ > 0, and then we obtain

P (Z ≥ x) ≤ exp [ψ∗Z(x)] ,

with

ψ∗Z(x) = sup
λ>0
{λx− ψZ(λ)} .

Remarks

• we need to know ψZ .

• ψZ(0) = 0 implies ψ∗Z ≥ 0.

• ψZ is finite on (0, b) where b ≤ ∞.

• ψZ is convex.

• ψZ is infinite time differentiable.

• If E[Z] = 0, then ψ
′

Z(0) = ψZ(0) = 0.

• How do you get ψ∗Z(x)?
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•
ψ∗Z(x) = xλx − ψZ(λx),

where ψ
′

Z(λx) = x. In particular,

λx =
(
ψ

′

Z

)−1
(x).

(Since ψZ is strictly convex, ψ
′

Z is strictly increasing.)

Example. 1) Normal : Z ∼ N(0, σ2)

ψZ(λ) = λ2σ2

2 . Then λx = x
σ2 and

ψ∗Z(x) = xλx − ψZ(λx) =
x2

2σ2
.

Hence

P (Z ≥ x) ≤ e−
x2

2σ2 .

This result is not optimal: missing a constant 1
2 .

Example. 2) Poisson : X ∼ Poisson(ν), ν > 0

Let Z = X − ν. Then E
[
eλZ

]
= eν(e

λ−λ−1) and

λx = log
(

1 +
x

ν

)
, x > 0.

And
ψ∗Z(x) = νh

(x
ν

)
,

where
h(µ) = (1 + µ) log(1 + µ)− µ, µ ≥ −1.

similarly if x ≤ ν,

ψ∗−Z(x) = νh
(
−x
ν

)
.
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