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Concentration of mass around equator for an n-sphere: We have seen that most of the mass of
a unit ball is at its boundary. A student asked in the previous lecture whether it is true that the mass is
concentrated around an equator for an n-sphere

Sn−1 = {x ∈ Rn | ‖x‖ = 1}

and Ale answered that in the following.

Let σn−1(A) denote the surface area of a subset A of Sn−1. For concreteness, define an equator E, a band
Er around it for r > 0 and a spherical cap Cr as follows:

E = {x ∈ Sn−1, x1 = 0},
Er = {x ∈ Sn−1, |x1| < r} and

Cr = {x ∈ Sn, x1 > 0} ∩ Ecr .

Consider the convex cone Dr generated by Cr and the center of the sphere and note that the surface area of
Cr,

σn−1(Cr) =
Volume of the cone Dr

Vn

where Vn is the volume of unit ball. The ball constructed with the base of the cap Cr as its equator contains
Dr and has a volume of (1− r2)n/2Vn. So

σn−1(Cr) ≤ (1− r2)n/2 ≤ e−nr
2/2.

This shows that

σn−1(Er) ≥ 1− 2e−nr
2/2

It may seem puzzling that the mass is concentrated at any equator of the sphere. This may be understood
in the following manner. If

∑n
i=1 x

2
i = 1 and xi are identically distributed then we expect all of them to be

small . xi being small is the same thing as saying that (x1, · · · , xn) lies close to an equator.

Recall from the previous lecture that we derived the Chernoff bound

P(Z ≥ z) ≤ exp (−ψ∗Z(x)).

Also recall that

• For Z ∼ N (0, σ2), the log mgf function ψZ(λ) = λ2σ2/2 and its conjugate ψ∗Z(x) = x2/2σ2.

3-1



3-2 Lecture 3: September 8

• For X ∼ Poisson(ν), where ν > 0 considering Z = X − ν

ψZ(λ) = ν(eλ − λ− 1), ψ∗Z(x) = νh(x/ν)

where h(u) = (1 + u) log(1 + u)− u for u ≥ −1. And for x ≤ ν,

ψ∗−Z(x) = νh(−x/ν).

• If X ∼ Bernouli(p), then considering Z = X − p, for 0 < x < 1− p,

ψ∗Z(x) = (1− p− x) log
1− p− x

1− p
+ (p+ x) log

p+ x

p
.

which may be recognized as KL(Bernouli(x+ p),Bernouli(p)).

Sums of independent random variables: Suppose Xi−EXi, i = 1, · · · , n are i.i.d with log mgf ψX and
let Z =

∑n
i=1Xi − EXi. Then

ψZ(λ) = logE[eλZ ] = nψX(λ)

which implies ψ∗Z(x) = nψ∗X(x/n).

Example: Suppose X1, X2, · · · , Xn ∼ N (0, σ2) are independent. Then the log mgf of Z =
∑
iXi is

ψ∗Z(x) = n(x/n)2/2σ2 = x2/2nσ2.

So for t > 0,

P (X̄n ≥ t) = P (Z ≥ nt) ≤ exp−ψ∗Z(nt) = e−nt
2/2σ2

.

Subgaussian Random Variables

Definition: A random variable X is sub-Gaussian with variance factor ν2 if

ψX(λ) ≤ λ2ν2/2 ∀λ ∈ R.

We will write this as X ∈ G(v). The log mgf of X ∈ G(v) is upper bounded by that of a normal with mean
0 and variance ν2.

Example: If X ∼ N(0, ν2) then ψX(λ) = λ2ν2/2 and hence X ∈ G(ν).

Note that if X ∈ G(ν), then for x > 0, by the exponentiation technique used in Chernoff bounds, we can
write

P(X ≥ x) ≤ inf
λ>0

Eeλ(X−x) ≤ inf exp (
1

2
λ2ν2 − λx) = e−x

2/2ν2

.

Similarly it can be shown that P (X ≤ −x) ≤ e−x2/2ν2

and hence P (|X| > x) ≤ 2e−x
2/2ν2

.

We remark that sub-Gaussian behaviour results in Gaussian concentration due to these bounds.

Theorem 3.1 If X ∈ G(ν), then EX = 0 and Var(X) =: V (X) ≤ ν2.
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Proof: As X ∈ G(ν), we should have 0 ≤ EeλX ≤ eλ
2v2/2 for all λ ∈ R. After subtracting 1 and dividing

by λ > 0, taking limits as λ → 0+, we get EX = 0. To get the bound on variance, we again start from the
same inequality and write

− 1

λ2
≤ E

[eλX − 1− λX
λ2

]
≤ eλ

2ν2 − 1

λ2
.

Taking limits as λ→ 0, we obtain EX2 ≤ ν2 which gives the desired result.

Example: Suppose X is a Radamacher random variable, that is it takes −1 or +1 with probability 1/2
each. Then X ∈ G(1) because

EeλX =
1

2
(e−λ + eλ) = cosh(λ) ≤ eλ

2/2.

Example: Suppose X ∼ Uniform[−a, a], where a > 0. Then X ∈ G(a) because

EeλX =

∫ a

−a
eλx

1

2a
dx =

1

2aλ
(eλa − e−λa) =

sinh(λa)

λa
≤ eλ

2a2/2

for nonzero λ and the inequality holds for λ = 0.

Lemma 3.2 1. X ∈ G(ν)⇒ αX ∈ G(|α|ν) for all α ∈ R.

2. If X1 ∈ G(ν1), X2 ∈ G(ν2), then X1 +X2 ∈ G(ν1 + ν2).

3. If X1 ∈ G(ν1), X2 ∈ G(ν2) and further X1 and X2 are independent, then X1 +X2 ∈ G(
√
ν21 + ν22).

Proof: (1) and (3) are trivial to show. For the second part, we use Holder’s inequality as follows, with
1/p = v2/(v1 + v2) and 1/q = 1− 1/p :

Eeλ(X1+X2) = E[eλX1eλX1 ] ≤ (EepλX1)1/p)(EeqλX2)1/q) ≤ epλ
2ν2

1/2eqλ
2ν2

2/2 ≤ eλ
2/2(ν1+ν2)

2

Note that
√
ν21 + ν22 ≤ ν1 + ν2 for positive ν1, ν2 and hence in the third part, we get a tighter bound with

the additional assumption of independence.

Characterization of Sub-Gaussianity: If EX = 0, then the following are equivalent.

1. ∃v > 0 s.t EeλX ≤ eλ2ν2/2 for all λ ∈ R.

2. ∃c > 0 s.t P(|X| > λ) ≤ 2e−cλ
2

for all λ > 0.

3. ∃a > 0 s.t EeaX2 ≤ 2.

4. ∀p ≥ 1, (E|X|p)1/p ≤ Bν√p for some B > 0.

Note that linear combinations of sub-Gaussians are sub-Gaussian. Also, if X is such that EX = 0, a ≤ X ≤ b
almost surely, then X ∈ G((b− a)/2).
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Hoeffding’s inequality

Theorem 3.3 (Hoeffding’s inequality) Let X1, X2, · · · , Xn be independent random variables such that EXi =
0, ai ≤ Xi ≤ bi almost surely. Then letting Sn =

∑n
i=1Xi,, for t > 0

P(Sn ≥ t) ≤ exp
(
− 2t2∑n

i=1(bi − ai)2
)
.

There are several proofs for the inequality. Most of them use the fact that Xi ∈ G( bi−ai2 ). Generally, the
proof shows that

ψXi−EXi
≤ λ2(bi − ai)2

8
, ψ′′Xi−EXi

≤ (bi − ai)2

4

Example: Let X1, · · · , Xn be independent and Xi ∼ Bernouli(pi) where pi ∈ (0, 1), for i = 1, · · · , n. Then
from Hoeffding’s inequality, denoting p =

∑n
i=1 pi,

P(|X̄n − p| > t) ≤ 2e−2nt
2

.

In other words, for δ ∈ (0, 1), the following holds with probability at least 1− δ :

|X̄n − p| ≤
√

1

2n
log

2

δ
.

If δ = δn = n−c where c > 0, then the statement holds with probability at least 1 − n−c for an rhs that is

O
(√

logn
n

)
.

Using Chernoff bounds,

P(X̄n − p ≥ t) ≤ exp
(
− nHp(p+ t)

)
for 0 < t < 1− p

P(X̄n − p ≤ −t) ≤ exp
(
− nH1−p(1− p+ t)

)
for 0 < t < p

where Hp(x) = x log(xp ) + (1− x) log(1−x
1−p ). This bound is tighter than Hoeffding’s bound.

There is also a multiplicative version of concentration inequality, namely:

P
(∑

Xi ≥ (1 + ε)µ
)
≤ e−ε

2µ/3

P
(∑

Xi ≤ (1− ε)µ
)
≤ e−ε

2µ/2

where µ = np. Multiplicative bounds can also be better than Hoeffding too. Let X1, · · · , Xn be iid
Bernouli(p). Then Hoeffding and the multiplicative bounds give respectively,

P
(
p− X̄n ≥ t

)
≤ e−2nt

2

P
(
p− X̄n ≥ εp

)
≤ e−npε

2/2

which lead to(respectively)

P
(
p− X̄n ≥

√
1

2n
log

1

δ

)
≤ δ

P
(
p− X̄n ≥

√
2p

n
log

1

δ

)
≤ δ.
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The second one is better than the first one if p ≤ 1/4, and gets much better as p→ 0.

Hoeffding’s inequality can be sharpened to take into account where EX falls with respect to its bounds a, b.
In the above case, as p → 0, EX goes closer to the lower bound. EX = a+b

2 is best for Hoeffding. In the
next lecture we see how Berend and Kantorovich overcome asymmetric situations that is handicapping the
Hoeffding inequality.


