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4.1 More on Hoeffding’s Inequality

Last time, we went through Hoeffding’s inequality:

Theorem 4.1 (Hoeffding) Let X1, ..., Xn be independent r.v.’s such that EXi = 0, ai ≤ Xi ≤ bi a.s.. Let
Sn =

∑n
i=1Xi, then for any t > 0,

P(|Sn| > t) ≤ 2 exp

{
− 2t2∑n

i=1(bi − ai)2

}

Hoeffding’s inequality is not always optimal. The proof uses the fact that

ΨXi−EXi(λ) ≤ λ2(bi − ai)2

8
,

which depends on the extreme values of Xi and thus accounts for the “worst” case. The following theorem
sharpens the bound by taking into account where EXi locates.

Theorem 4.2 (Berend-Kontorovich) [BK13] Under the same assumptions as in Theorem 4.1, let

γi =
EXi − ai
bi − ai

,

we have

P(|Sn| > t) ≤ 2 exp

{
− t2

4
∑n
i=1 ci(bi − ai)2

}
where

ci =


0, γi = 0

1−2γi
4 log

(
1−γi
γi

) , 0 < γi <
1
2

γi(1−γi)
2 , 1

2 ≤ γi ≤ 1

Especially, when γi = 1
2 (that is, EXi = ai+bi

2 ), it recovers Hoeffding’s inequality. When Xi ∼ Bernoulli(p),

the bound becomes 2 exp
{
− t2

2np(1−p)

}
, which is much better than Hoeffiding’s when p is close to 0 or 1.
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Example 1 (Rademacher distribution) Let Xi =

{
1, with probability 1

2

−1, with probability 1
2

, and X =
∑n
i=1 αiXi, then

V (X) = ||α||2, and by Hoeffding’s inequality,

P(X ≥ t) ≤ exp

{
− t2

2||α||2

}
This is exactly the Chernoff bound we would get if X ∼ N(0, ||α||2). Hoeffding’s is optimal in this case.

For bounded r.v. ai ≤ Xi ≤ bi, we have V (Xi) ≤ (bi−ai)2
4 . We have seen that when V (Xi) achieves this

upper bound, Hoeffding’s is optimal. But when V (Xi) is much smaller, we will see that Bernstein’s inequality
becomes better. Before coming to that, we first introduce another class of random variables that is more
general than sub-gaussian.

4.2 Sub-Exponential Random Variables

Definition 4.3 A r.v. X is sub-exponential with parameters ν, c > 0, if

ΨX−EX(λ) ≤ λ2ν2

2
for ∀ |λ| ∈ [0,

1

c
)

and we write X ∈ S(ν, c).

By definition, sub-gaussian r.v.’s are always sub-exponential.

Theorem 4.4 If X ∈ S(ν, c) with EX = 0, then for ∀ λ ∈ [0, 1c ),

P(X ≥ t) ≤

{
e−

t2

2ν2 , 0 ≤ t ≤ ν2

c

e−
t
2c , t > ν2

c

Proof: We know that

P(X ≥ t) ≤ exp{−λt+ ΨX(λ)} ≤ exp

{
−λt+

λ2ν2

2

}
We want to minimize RHS over λ ∈ [0, 1c ). Without this constraint, the minima is λ∗ = t

ν2 .

(i) If λ∗ ≤ 1
c , i.e., t ≤ ν2

c , then minλ∈[0,1/c) RHS = e−
t2

2ν2 .

(ii) If λ∗ > 1
c , i.e., t < ν2

c , then RHS is monotonically decreasing when λ ∈ [0, 1c ), so minλ∈[0,1/c) RHS =

exp
{
− t

c + ν2

2c2

}
≤ exp

{
− t

2c

}
.

Example 2 (Chi-square distribution) Let X ∼ X1, then X
d
= Z2 where Z ∼ N(0, 1), and EX = 1. We
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can show that X ∈ S(2, 4):

E
[
eλ(X−1)

]
=

1√
2π

∫ +∞

−∞
eλ(z

2−1)e−z
2/2dz

=
e−λ√

2π

∫ +∞

−∞
exp

{
−z

2

2
(1− 2λ)

}
dz

=
e−λ√
1− 2λ

1√
2π

∫ +∞

−∞
e−

y2

2 dy

(
Let y =

√
1− 2λz, for λ ∈

(
0,

1

2

))
=

e−λ√
1− 2λ

≤ e2λ
2

, ifλ ∈
(

0,
1

4

)
.

Properties of S(ν, c):

1. If V (X) = ν2 and |X − EX| ≤ c a.e., then X ∈ S(
√

2ν, 2c).

Proof:

E
[
eλ(X−EX)

]
= 1 +

λ2ν2

2
+

∞∑
n=3

λn

n!
E [(X − EX)n]

≤ 1 +
λ2ν2

2
+
λ2ν2

2

∞∑
n=3

(λc)n−2
(

since E [(X − EX)n] ≤ E
[
(X − EX)2cn−2

])
= 1 +

λ2ν2

2

∞∑
n=0

(λc)n

= 1 +
λ2ν2

2

1

1− λc

(
if λ <

1

c

)
≤ exp

{
λ2ν2

2(1− λc)

}
≤ exp{λ2ν2}

(
if λ <

1

2c

)

2. If Xi ∈ S(νi, ci) independently, EXi = 0, then
∑
iXi ∈ S

(√∑
i ν

2
i , maxi ci

)
.

Proof:

Ψ∑
iXi

(λ) =
∑
i

ΨXi(λ) ≤
λ2
∑
i ν

2
i

2
, if |λ| < min

i

1

ci

This implies that

P

(
1

n

∑
i

Xi ≥ t

)
≤

{
e−

nt2

2ν2 , 0 < t ≤ ν2

c

e−
nt
2c , ν2

c < t
≤ exp

{
−n ·min

{
t2

2ν2
,
t

2ν

}}

where ν2 = 1
n

∑
i ν

2
i , c = maxi ci.

3. If X ∈ S(ν, c), then (E [|X|p])1/p ≤ cp for p ≥ 1.
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4.3 Bernstein’s Inequality

Theorem 4.5 (Easy Bernstein) Let X be such that V (X) = ν2, |X − EX| ≤ c a.e., then

P(X − EX ≥ t) ≤ exp

{
− t2

2(ν2 + ct)

}

Note that when ν2 � t, the bound behaves like exp
{
− t2

2ν2

}
; when ν2 � t, it behaves like exp

{
− t

2c

}
.

Proof: We saw in previous section that X ∈ S(
√

2ν, 2c), and

E
[
eλ(X−EX)

]
≤ exp

{
λ2ν2

2(1− λc)

}
, λ ∈ [0,

1

c
)

Picking λ = t
ct+ν2 <

1
c gives the desired result.

Theorem 4.6 (Bernstein) Let X1, ..., Xn be independent r.v.’s such that for ν, c > 0, q = 3, 4, ...,

(1)
∑n
i=1 E(X2

i ) ≤ ν2

(2)
∑n
i=1 E (|Xi|q) ≤ q!

2 ν
2cq−2 (in fact , it is enough to assume

∑n
i=1 E

(
(Xi)

q
+

)
≤ q!

2 ν
2cq−2)

Then ∀t > 0,

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

{
−ν

2

c2
h1

(
ct

ν2

)}
≤ exp

{
− t2

2ν2 + ct

}
where h1(u) = 1 + u+

√
1 + 2u, u > 0.

Remarks

- As a result, we have

P

(
n∑
i=1

Xi ≥
√

2ν2t+ ct

)
≤ e−t

- If we add additional assumptions such that |Xi − EXi| ≤ B a.e.,
∑n
i=1 E(X2

i ) = ν2, then

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

{
− t2

2ν2 + B
3 t

}

We defer the proof to next lecture.
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