36-788: Topics in High Dimensional Statistics I Fall 2015

Lecture 4: Sept. 10

Lecturer: Alessandro Rinaldo Scribes: Lingxue Zhu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 More on Hoeffding's Inequality

Last time, we went through Hoeffding's inequality:

Theorem 4.1 (Hoeffding) Let $X_1, ..., X_n$ be independent r.v.'s such that $\mathbb{E}X_i = 0$, $a_i \leq X_i \leq b_i$ a.s.. Let $S_n = \sum_{i=1}^n X_i$, then for any $t > 0$,

$$
\mathbb{P}(|S_n| > t) \le 2 \exp \left\{-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right\}
$$

Hoeffding's inequality is not always optimal. The proof uses the fact that

$$
\Psi_{X_i - \mathbb{E}X_i}(\lambda) \le \frac{\lambda^2(b_i - a_i)^2}{8} ,
$$

which depends on the extreme values of X_i and thus accounts for the "worst" case. The following theorem sharpens the bound by taking into account where $\mathbb{E} X_i$ locates.

Theorem 4.2 (Berend-Kontorovich) [BK13] Under the same assumptions as in Theorem 4.1, let

$$
\gamma_i = \frac{\mathbb{E}X_i - a_i}{b_i - a_i} ,
$$

we have

$$
\mathbb{P}(|S_n| > t) \le 2 \exp \left\{-\frac{t^2}{4 \sum_{i=1}^n c_i (b_i - a_i)^2}\right\}
$$

where

$$
c_i = \begin{cases} 0, & \gamma_i = 0 \\ \frac{1-2\gamma_i}{4\log\left(\frac{1-\gamma_i}{\gamma_i}\right)}, & 0 < \gamma_i < \frac{1}{2} \\ \frac{\gamma_i(1-\gamma_i)}{2}, & \frac{1}{2} \leq \gamma_i \leq 1 \end{cases}
$$

Especially, when $\gamma_i = \frac{1}{2}$ (that is, $\mathbb{E}X_i = \frac{a_i + b_i}{2}$), it recovers Hoeffding's inequality. When $X_i \sim \text{Bernoulli}(p)$, the bound becomes $2 \exp \left\{-\frac{t^2}{2 \pi n (1)}\right\}$ $\frac{t^2}{2np(1-p)}$, which is much better than Hoeffiding's when p is close to 0 or 1.

 \blacksquare

Example 1 (Rademacher distribution) Let $X_i =$ $\begin{cases} 1, & with \ probability \frac{1}{2} \\ -1, & with \ probability \frac{1}{2} \end{cases}$, and $X = \sum_{i=1}^{n} \alpha_i X_i$, then $V(X) = ||\alpha||^2$, and by Hoeffding's inequality,

$$
\mathbb{P}(X \ge t) \le \exp\left\{-\frac{t^2}{2||\alpha||^2}\right\}
$$

This is exactly the Chernoff bound we would get if $X \sim N(0, ||\alpha||^2)$. Hoeffding's is optimal in this case.

For bounded r.v. $a_i \leq X_i \leq b_i$, we have $V(X_i) \leq \frac{(b_i - a_i)^2}{4}$ $\frac{a_{i}}{4}$. We have seen that when $V(X_{i})$ achieves this upper bound, Hoeffding's is optimal. But when $V(X_i)$ is much smaller, we will see that Bernstein's inequality becomes better. Before coming to that, we first introduce another class of random variables that is more general than sub-gaussian.

4.2 Sub-Exponential Random Variables

Definition 4.3 A r.v. X is sub-exponential with parameters $\nu, c > 0$, if

$$
\Psi_{X-\mathbb{E}X}(\lambda) \le \frac{\lambda^2 \nu^2}{2}
$$
 for $\forall |\lambda| \in [0, \frac{1}{c})$

and we write $X \in S(\nu, c)$.

By definition, sub-gaussian r.v.'s are always sub-exponential.

Theorem 4.4 If $X \in S(\nu, c)$ with $\mathbb{E}X = 0$, then for $\forall \lambda \in [0, \frac{1}{c})$,

$$
\mathbb{P}(X \ge t) \le \begin{cases} e^{-\frac{t^2}{2\nu^2}}, & 0 \le t \le \frac{\nu^2}{c} \\ e^{-\frac{t}{2c}}, & t > \frac{\nu^2}{c} \end{cases}
$$

Proof: We know that

$$
\mathbb{P}(X \ge t) \le \exp\{-\lambda t + \Psi_X(\lambda)\} \le \exp\left\{-\lambda t + \frac{\lambda^2 \nu^2}{2}\right\}
$$

We want to minimize RHS over $\lambda \in [0, \frac{1}{c})$. Without this constraint, the minima is $\lambda^* = \frac{t}{\nu^2}$.

- (i) If $\lambda^* \leq \frac{1}{c}$, i.e., $t \leq \frac{\nu^2}{c}$ $\frac{c^2}{c}$, then $\min_{\lambda \in [0,1/c)} \text{RHS} = e^{-\frac{t^2}{2\nu^2}}$.
- (ii) If $\lambda^* > \frac{1}{c}$, i.e., $t < \frac{\nu^2}{c}$ ²/_c, then RHS is monotonically decreasing when $\lambda \in [0, \frac{1}{c})$, so $\min_{\lambda \in [0, 1/c)} RHS$ $\exp\left\{-\frac{t}{c} + \frac{\nu^2}{2c^2}\right\}$ $\frac{\nu^2}{2c^2}$ \leq exp $\left\{-\frac{t}{2c}\right\}$.

Example 2 (Chi-square distribution) Let $X \sim \mathcal{X}_1$, then $X \stackrel{d}{=} Z^2$ where $Z \sim N(0,1)$, and $\mathbb{E} X = 1$. We

can show that $X \in S(2, 4)$:

$$
\mathbb{E}\left[e^{\lambda(X-1)}\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{\lambda(z^2-1)} e^{-z^2/2} dz
$$

\n
$$
= \frac{e^{-\lambda}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left\{-\frac{z^2}{2}(1-2\lambda)\right\} dz
$$

\n
$$
= \frac{e^{-\lambda}}{\sqrt{1-2\lambda}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} dy \quad \left(\text{Let } y = \sqrt{1-2\lambda}z, \text{ for } \lambda \in \left(0, \frac{1}{2}\right)\right)
$$

\n
$$
= \frac{e^{-\lambda}}{\sqrt{1-2\lambda}} \le e^{2\lambda^2}, \text{ if } \lambda \in \left(0, \frac{1}{4}\right).
$$

Properties of $S(\nu, c)$:

1. If $V(X) = \nu^2$ and $|X - \mathbb{E}X| \leq c$ *a.e.*, then $X \in S(\sqrt{2})$ $2\nu, 2c$). Proof: \sim

$$
\mathbb{E}\left[e^{\lambda(X-\mathbb{E}X)}\right] = 1 + \frac{\lambda^2 \nu^2}{2} + \sum_{n=3}^{\infty} \frac{\lambda^n}{n!} \mathbb{E}\left[(X-\mathbb{E}X)^n\right]
$$

\n
$$
\leq 1 + \frac{\lambda^2 \nu^2}{2} + \frac{\lambda^2 \nu^2}{2} \sum_{n=3}^{\infty} (\lambda c)^{n-2} \quad \text{(since } \mathbb{E}\left[(X-\mathbb{E}X)^n\right] \leq \mathbb{E}\left[(X-\mathbb{E}X)^2 c^{n-2}\right])
$$

\n
$$
= 1 + \frac{\lambda^2 \nu^2}{2} \sum_{n=0}^{\infty} (\lambda c)^n
$$

\n
$$
= 1 + \frac{\lambda^2 \nu^2}{2} \frac{1}{1-\lambda c} \quad \text{(if } \lambda < \frac{1}{c})
$$

\n
$$
\leq \exp\left\{\frac{\lambda^2 \nu^2}{2(1-\lambda c)}\right\}
$$

\n
$$
\leq \exp\{\lambda^2 \nu^2\} \quad \text{(if } \lambda < \frac{1}{2c})
$$

2. If $X_i \in S(\nu_i, c_i)$ independently, $\mathbb{E}X_i = 0$, then $\sum_i X_i \in S(\sqrt{\sum_i \nu_i^2}, \max_i c_i)$. Proof:

$$
\Psi_{\sum_{i} X_{i}}(\lambda) = \sum_{i} \Psi_{X_{i}}(\lambda) \le \frac{\lambda^{2} \sum_{i} \nu_{i}^{2}}{2}, \text{ if } |\lambda| < \min_{i} \frac{1}{c_{i}}
$$

This implies that

$$
\mathbb{P}\left(\frac{1}{n}\sum_{i}X_{i}\geq t\right)\leq\begin{cases}e^{-\frac{nt^{2}}{2\nu^{2}}}, & 0
$$

where $\nu^2 = \frac{1}{n} \sum_i \nu_i^2$, $c = \max_i c_i$.

3. If $X \in S(\nu, c)$, then $\left(\mathbb{E} \left[|X|^p \right]\right)^{1/p} \leq cp$ for $p \geq 1$.

 \blacksquare

4.3 Bernstein's Inequality

Theorem 4.5 (Easy Bernstein) Let X be such that $V(X) = \nu^2$, $|X - \mathbb{E}X| \leq c$ a.e., then

$$
\mathbb{P}(X - \mathbb{E}X \ge t) \le \exp\left\{-\frac{t^2}{2(\nu^2 + ct)}\right\}
$$

Note that when $\nu^2 \gg t$, the bound behaves like $\exp\left\{-\frac{t^2}{2\nu}\right\}$ $\frac{t^2}{2\nu^2}$; when $\nu^2 \ll t$, it behaves like $\exp\left\{-\frac{t}{2c}\right\}$. **Proof:** We saw in previous section that $X \in S$ √ $(2\nu, 2c)$, and

$$
\mathbb{E}\left[e^{\lambda(X-\mathbb{E}X)}\right] \le \exp\left\{\frac{\lambda^2\nu^2}{2(1-\lambda c)}\right\}, \quad \lambda \in [0, \frac{1}{c})
$$

Picking $\lambda = \frac{t}{ct + \nu^2} < \frac{1}{c}$ gives the desired result.

Theorem 4.6 (Bernstein) Let $X_1, ..., X_n$ be independent r.v.'s such that for $\nu, c > 0$, $q = 3, 4, ...,$

(1) $\sum_{i=1}^{n} \mathbb{E}(X_i^2) \leq \nu^2$ (2) $\sum_{i=1}^{n} \mathbb{E}(|X_i|^q) \leq \frac{q!}{2} \nu^2 c^{q-2}$ (in fact, it is enough to assume $\sum_{i=1}^{n} \mathbb{E}((X_i)^q_+) \leq \frac{q!}{2} \nu^2 c^{q-2}$)

Then $\forall t > 0$,

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge t\right) \le \exp\left\{-\frac{\nu^2}{c^2}h_1\left(\frac{ct}{\nu^2}\right)\right\} \le \exp\left\{-\frac{t^2}{2\nu^2 + ct}\right\}
$$

where $h_1(u) = 1 + u + \sqrt{1 + 2u}$, $u > 0$.

Remarks

- As a result, we have

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge \sqrt{2\nu^2 t} + ct\right) \le e^{-t}
$$

If we add additional assumptions such that $|X_i - \mathbb{E}X_i| \leq B$ a.e., $\sum_{i=1}^n \mathbb{E}(X_i^2) = \nu^2$, then

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge t\right) \le \exp\left\{-\frac{t^2}{2\nu^2 + \frac{B}{3}t}\right\}
$$

We defer the proof to next lecture.

References

[BK13] D. BEREND and A. KONTOROVICH, "On the concentration of the missing mass", Electron. Commun. Probab., 2013, 18 (3), 1-7.

ь