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5.1 Recap and Outline

In the previous lecture, we introduced the Le Cam equation which states the minimax rate for certain
problems can be computed by solving

N(ε,Θ, d) = nε2 (5.1)

for ε, where Θ is the hypothesis class on which d is a metric (used as a loss function) and for which N(ε,Θ, d)
is the ε-covering number. Today, we discuss applications of the Le Cam equation to nonparametric density
estimation under L2 loss, over hypothesis classes consisting of Hölder continuous functions. We also provide
some intuition for the Le Cam equation by analyzing the risk of a regression estimator based on empirical
risk minimization.

Remark: While all the examples we discuss here are nonparametric problems, the Le Cam equation also
holds in many parametric problems. Here, we typically have logN(ε) = d log ε−1. 1 This leads to a minimax
lower bound of �

√
d/n, which is hence commonly referred to as the parametric rate. 2

1N(ε) denotes the covering number, suppressing the dependence on the hypothesis class and loss (since these are fixed).
2Of course, many nonparametric problems have the parametric rate (e.g. estimating statistical functionals when densities

are sufficiently smooth relative to the dimension [K15]).
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5.2 Hölder Classes of Smooth Functions

We first provide some notation necessary for defining the Hölder function class. Nd denotes the set of d-tuples
of non-negative integers, which we denote with a vector symbol~·, and, for ~i ∈ Nd, we define the operators

D
~i :=

∂|
~i|

∂i1x1 · · · ∂idxd
and |~i| =

d∑
k=1

ik.

Definition 5.1 (Hölder Ball): Suppose X ⊆ Rn is open. For β, L > 0, a Hölder ball is a set of the form:

Σ(X , β, L) :=

f : X → R

∣∣∣∣∣∣∣ sup
x6=y∈X
|~i|=bβc

|D~if(x)−D~if(y)|
‖x− y‖β−bβc

≤ L

 , (5.2)

where bβc is the greatest integer strictly less than β.

We will use without proof the following fact about Hölder Balls:

Lemma 5.2 The log-covering number of a Hölder ball over an open set X ⊆ Rd is

logN(ε,Σ(X , β, L), ‖ · ‖2) � ε−d/β . (5.3)

5.3 Application to Nonparametric Density Estimation

Suppose f ∈ Σ(X , β, L) is an unknown probability density function, from which we observe samples
X1, . . . , Xn. We are interested in estimating f . If we make the further assumption that f is lower and
upper bounded away from 0 and ∞, respectively (i.e., c := infx∈X f(x) > 0 and C := supx∈X f(x) < ∞),
then, it can be shown that the Le Cam equation (5.1) holds. Then, (5.3) gives nε2 = ε−d/β , and solving for
ε2 in terms of n gives the following:

Proposition 5.3 The L2 minimax rate for the above nonparametric density estimation problem satisfies

inf
f̂

sup
f∈Σ(X ,β,L)

0<c≤f≤C<∞

E
[
‖f − f̂‖2

]
∈ Ω

(
n−

β
d+2β

)
.

Remark: With the right choice of bandwidth and additional assumptions on the behavior of f near the
boundary of X , the risk of the kernel density estimator is of this order, providing a matching upper bound.
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5.4 The Le Cam Equation for Nonparametric Regression

Here we provide some intuition for the Le Cam equation by showing that it arises naturally when tuning a
nonparametric regression estimator based on empirical risk minimization.

Setup: Fix a real-valued function class F on a domain X , and fix f∗ ∈ F and X1, . . . , Xn ∈ X . Let
ε ∼ N (0n, σ

2In), and suppose we observe (X1, Y1), . . . , (Xn, Yn) ∈ X × R, where each Yi = f∗(Xi) + εi.
Define the empirical L2 risk

Rn(f, f ′) := E

[
1

n

n∑
i=1

(
f̂(Xi)− f∗(Xi)

)]
, ∀f, f ′ ∈ F

(noting that Rn is a (pseudo)metric) and the empirical risk minimization estimator

f̂ := argmin
f∈F

n∑
i=1

(f(Xi)− Yi)2
.3

Analysis: By construction, of f̂ ,

1

n

n∑
i=1

(
f̂(Xi)− f∗(Xi)

)
≤ 2

n

n∑
i=1

εi

(
f̂(Xi)− f∗(Xi)

)
D
=

2σ

n

n∑
i=1

wi

(
f̂(Xi)− f∗(Xi)

)
=

2σ√
n

sup
g∈G

n∑
i=1

wig(Xi),

where w ∼ N (0n, In), G :=
{
f−f∗
√
n

: f ∈ F
}

, and
D
= denotes equality in distribution.

Let δ > 0 (to be chosen later), and suppose that (G, Rn) has a finite covering number Nδ := N(δ,G, Rn).
Suppose {g(1), . . . , g(Nδ)} ⊆ G is a minimal δ-covering of (G, Rn). Then, for any g ∈ G, letting

j := argmin
i∈{1,...,Nδ}

Rn

(
g(i), g

)
,

by definition of a δ-covering,

n∑
i=1

wig(Xi) =

n∑
i=1

wig
(j)(Xi) + wi

(
g(Xi)− g(j)(Xi)

)
≤ max
`∈{1,...,Nδ}

n∑
i=1

wig
(`)(Xi) + δ‖w‖2.

Chaining together the above inequalities and taking expectations on both sides gives

Rn(f, f ′) ≤ 2σ√
n

(
E

[
max

`∈{1,...,Nδ}

n∑
i=1

wig
(`)(Xi)

]
+ δE [‖w‖2]

)
≤ 2σ√

n

(√
2ν log (Nδ) + δ

√
n
)
,

where ν := max`∈{1,...,Nδ}
∑n
i=1 g

(`)(Xi), using a standard bound on the expectation of a maximum of a
sum of independent Gaussian random variables. Note that the first term is non-increasing in δ (since Nδ
is non-increasing in δ), while the second term is non-decreasing in δ. Hence, to minimize the rate of this
expression in δ, we equate the two terms: √

logNδ = δ
√
n.

Squaring both sides gives the Le Cam equation.

Next time, we will formally prove this minimax lower bound for nonparametric regression with L2 loss, and
begin discussing Assouad’s method.

3f̂ may very well not be computable in practice; here, we are interested only in analyzing its statistical performance.
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