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In this lecture we review the equalizer rule for exact minimax estimation and then proceed to minimax
hypothesis testing (also known as minimax detection). Finally we consider a high-dimensional detection
example, where we want to decide whether there is signal in the underlying model.

9.1 The equalizer rule

Suppose Θ is the parameter space and let d : Θ × Θ → R+ be a specific loss function (e.g., the `2 loss

d(θ, θ′) = ‖θ − θ′‖22). The risk of an estimator θ̂ is defined as Eθ[d(θ̂, θ)], where the expectation is taken
over i.i.d. sampled from the underlying distribution parameterized by the true parameter θ. Let π be a prior
distribution over the parameter space Θ. The Bayes risk of an estimator θ̂ with respect to prior π is defined
as

R(θ̂, π) =

∫
Θ

Eθ[d(θ̂, θ)]dπ(θ).

The posterior risk of an estimator θ̂ with respect to prior π and data X is defined as

r(θ̂|X) = Eθ∼π[d(θ̂, θ)|X].

A simple observation is that R(θ̂, π) can also be expressed as an integration over posterior risk of θ̂, as shown
below:

R(θ̂, π) =

∫
X
r(θ̂|X)dµX(X). (9.1)

The Bayes rule estimator with respect to prior π is the estimator θ̂ that minimizes the posterior risk r(θ̂|X)
at every X. It is known that when `2 loss is used, the Bayes rule is the posterior mean E[θ|X].

The equalizer rule asserts that an estimator is minimax if it is the Bayes rule with respect to some prior π and
achieves constant risk for all underlying parameter θ. More specifically, we have the following proposition:

Proposition 9.1 (The equalizer rule) Let θ̂(π) be the Bayes rule with respect to some prior π. If

Eθ[d(θ̂(π), θ)] = C, ∀θ ∈ Θ

for some constant C, then θ̂(π) is minimax:

sup
θ∈Θ

Eθ[d(θ̂(π), θ)] = inf
θ̂

sup
θ

Eθ[d(θ̂, θ)].
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Example: Binomial distribution . Suppose X ∼ B(n, θ) for θ ∈ Θ = [0, 1]. Consider the Beta prior
θ ∼ Beta(α, β), The posterior distribution of θ conditioned on X is then

θ|X = x ∼ Beta(α+ x, β + n− x).

Under the `2 loss function d(θ̂, θ) = (θ̂ − θ)2, the Bayes rule is the posterior mean:

θ̂(π) =
α+ x

α+ β + n
=

α+ β

α+ β + n
· α

α+ β
+

n

α+ β + n
· x
n
.

Taking α = β =
√
n/2, we have

R(θ̂(π), θ) =
1

4(1 +
√
n)2

, ∀θ ∈ Θ,

which is a constant function with respect to the underlying parameter θ. Subsequently, by the equalizer rule,
we claim that the minimax estimator for θ is

θ̂ =
1

1 +
√
n
· 1

2
+

√
n

1 +
√
n
· X
n
.

9.2 General hypothesis testing theory

Consider distribution class P = {pθ : θ ∈ Θ} for some parameter space Θ ⊆ Rd. Suppose X1, · · · , Xn
i.i.d.∼ pθ

for some θ ∈ Θ. We want to test:
H0 : θ ∈ Θ0; H1 : θ ∈ Θ1;

for some Θ0,Θ1 ⊆ Θ. Conventionally we also assume that Θ0∩Θ1 = ∅. We call a hypothesis testing problem
simple if each one of Θ0,Θ1 only has one parameter; that is, Θ0 = {θ0} and Θ1 = {θ1}. A test function ψ
is a function from X to {0, 1} such that

ψ(X) =

{
1, reject H0;
0, fail to reject H0.

The type-I error of a testing function ψ is defined as supθ∈Θ0
Eθψ, while the type-II error if defined as

supθ∈Θ1
(1− Eθψ).

From now on we shall consider the simple hypothesis testing case, where Θ0 = {θ0},Θ1 = {θ1} for some
distinct θ0, θ1 ∈ Θ. There are two standard ways of defining the “risk” of the simple hypothesis testing
problem:

1. The risk of ψ is defined as
R(ψ) = R(ψ, θ0) +R(ψ, θ1),

where
R(ψ, θ) = c0Eθψ · 1[θ = θ0] + (1− Eθψ) · 1[θ = θ1]

for some constant c0 > 0.

2. Neyman-Pearson’s approach (“bi-criteria”). First define

Ψα = {ψ : Eθ0ψ ≤ α}

to be all tests that have type-I error controlled by some constant α ∈ (0, 1). The risk of a test ψ ∈ Ψα

is then defined as
Rα(ψ) = Eθ1 [1− ψ].
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The following lemma (usually referred to as Neyman-Pearson lemma) asserts that the optimal test for both
risk formulations are likelihood ratio tests.

Lemma 9.2 (Neyman-Pearson) For both risk formulations the optimal test ψ∗ takes the form

ψ∗(X) =

{
1, if p1(X)/p0(X) ≥ c;
0, otherwise.

Here we assumed that p1(X)/p0(X) = c with probability zero. Note that for risk formulation 1, set c = c0
and for risk formulation 2, set c such that Eθ0ψ∗ = α.

The two risk formulations can also be generalized to the composite hypothesis case:

1. For the first formulation, define

R(ψ,Θ0,Θ1) = c0 · sup
θ∈Θ0

Eθψ + sup
θ∈Θ1

Eθ[1− ψ]

for some constant c0 > 0.

2. For the second formulation with constant α ∈ (0, 1), define

Rα(ψ,Θ0,Θ1) = sup
θ∈Θ1

Eθ[1− ψ]

for those ψ ∈ Ψα = {ψ : supθ∈Θ0
Eθ[ψ] ≤ α}.

9.3 Minimax test (minimax detection)

Definition 9.3 (minimax test) A test ψM is minimax optimal if

R(ψM ,Θ0,Θ1) = inf
ψ
R(ψ,Θ0,Θ1)

for the first formulation or

Rα(ψM ,Θ0,Θ1) = inf
ψ∈Ψα

Rα(ψ,Θ0,Θ1).

Under regularity conditions, one can show that

1. The minimax risk of R(ψ,Θ0,Θ1) is

sup
p0,p1

{1− ‖p0 − p1‖1; p0 ∈ conv(P0), p1 ∈ conv(P1)}

and the minimax test is achieved by a Bayes test. Here conv(·) is the convex hull of a distribution
class.

2. The minimax risk of Rα(ψ,Θ0,Θ1) is

sup
p0,p1

{
inf
ψ∈Ψα

Ep1 [1− ψ]; p0 ∈ conv(P0), p1 ∈ conv(P1)

}
.
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We next consider an example of high-dimensional minimax detection. Consider Θ0 = {θ0} and Θ1 ⊆ Rd.
Typically we assume θ0 = 0 is the zero vector and Θ1(n, d) changes with n (the number of samples) and d
(the number of variables). The risk of a testing function is defined as

R(ψ,Θ0,Θ1) = Eθ0ψ + sup
θ∈Θ1

Eθ1 [1− ψ],

or under a Bayesian formulation

R(ψ,Θ0,Θ1) = Eθ0ψ +

∫
Θ1

Eθ1 [1− ψ]dπ(θ1)

with respect to some prior distribution π over Θ1. Under the high-dimensional testing scenario, we usually
adopt the following definition of asymptotic power to quantify the power of a test ψ:

Definition 9.4 (asymptotic power) A test ψ is asymptotically powerful if

lim
n→∞

R(ψ,Θ0(n, d),Θ1(n, d)) = 0.

On the other hand, ψ is asymptotically powerless if

lim inf
n→∞

R(ψ,Θ0(n, d),Θ1(n, d)) = 1.

Let’s now consider the example of high-dimensional normal mean testing problem. We have

H0 : N (0, I), H1 : N (θ, I),

where θ ∈ Θ1(n, d) = {θ ∈ Rd : ‖θ‖2 ≥ rn,d}. The goal is to find the fastest rate of rn,d going to zero while
still making the test asymptotically powerful. As a perhaps simpler example, consider low-dimensional linear
regression

H0 : β = 0, H1 : β 6= 0.

For fixed design X ∈ Rn×d, a natural test is to consider ‖XX†y‖22. Under H0 we have

‖XX†y‖22 ∼ χ2
min(n,d).

Therefore, the test is powerless if
‖Xβ‖22√
min(n, d)

→ 0.


