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In this lecture we review the equalizer rule for exact minimax estimation and then proceed to minimax
hypothesis testing (also known as minimax detection). Finally we consider a high-dimensional detection
example, where we want to decide whether there is signal in the underlying model.

9.1 The equalizer rule

Suppose O is the parameter space and let d : © x © — R be a specific loss function (e.g., the f3 loss
d(0,0") = |0 — 0'||2). The risk of an estimator 6 is defined as Eg[d(f,6)], where the expectation is taken
over i.i.d. sampled from the underlying distribution parameterized by the true parameter 6. Let 7 be a prior
distribution over the parameter space ©. The Bayes risk of an estimator 6 with respect to prior 7 is defined
as

R(0,7) = / Eq[d(6, 0)]dr ().
e
The posterior risk of an estimator 6 with respect to prior m and data X is defined as
(0| X) = Eg[d(8,0)| X].

A simple observation is that R(é, 7) can also be expressed as an integration over posterior risk of é, as shown
below:

R(0,7) = /X P (61X )dpix (X). (9.1)

The Bayes rule estimator with respect to prior  is the estimator # that minimizes the posterior risk (6| X)
at every X. It is known that when £ loss is used, the Bayes rule is the posterior mean E[f|X].

The equalizer rule asserts that an estimator is minimaz if it is the Bayes rule with respect to some prior 7 and
achieves constant risk for all underlying parameter 8. More specifically, we have the following proposition:

Proposition 9.1 (The equalizer rule) Let é(ﬂ) be the Bayes rule with respect to some prior . If
Eg[d(d(r),0)] = C, VOecO
for some constant C, then 0(r) is minimaz:

sup Eg[d(0(r), 0)] = inf sup Eg[d (0, 0)].
6cO 6 0
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Example: Binomial distribution . Suppose X ~ B(n,0) for § € © = [0,1]. Consider the Beta prior
6 ~ Beta(, 8), The posterior distribution of 6 conditioned on X is then

0|X =z ~ Beta(a+ z,8+n — x).
Under the £, loss function d(6,0) = (§ — #)2, the Bayes rule is the posterior mean:

A a+x a+f « n T

0 = — . .2
(m) a+pB+n a+pB+n a—l—ﬁJra—&—ﬁ—l—n n

Taking a = § = y/n/2, we have

R(0(r),0) = m Vo € O,

which is a constant function with respect to the underlying parameter 6. Subsequently, by the equalizer rule,
we claim that the minimax estimator for 6 is

oL L, vm X
S l4+yn 2 14+yn on’

9.2 General hypothesis testing theory

Consider distribution class P = {py : @ € O} for some parameter space © C R%. Suppose X1,--- , X,, i Do

for some 0 € ©. We want to test:
HO:HE@O; leﬂe@l;

for some O, ©; C O©. Conventionally we also assume that ©gNO; = (). We call a hypothesis testing problem
simple if each one of Oy, 01 only has one parameter; that is, ©g = {6} and ©; = {01}. A test function
is a function from X to {0, 1} such that

v ={ g

reject Ho;
fail to reject Hy.

The type-I error of a testing function 1 is defined as supycg, Egt), while the type-II error if defined as
SUPgeo, (1 —Egvp).

From now on we shall consider the simple hypothesis testing case, where ©g = {6p},©1 = {61} for some
distinct 6y,60; € ©. There are two standard ways of defining the “risk” of the simple hypothesis testing
problem:

1. The risk of ¢ is defined as
R(Y) = R, 00) + R(¢, 01),

where
R(1),0) = coEotp - 1[0 = Op] + (1 — Egvp) - 1[0 = 6]

for some constant ¢y > 0.
2. Neyman-Pearson’s approach (“bi-criteria”). First define
Vo ={¢:Eg ¥ < o}

to be all tests that have type-I error controlled by some constant « € (0,1). The risk of a test ¢ € ¥,
is then defined as

Ra(¢) = Eo, [1 - 9.
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The following lemma (usually referred to as Neyman-Pearson lemma) asserts that the optimal test for both
risk formulations are likelihood ratio tests.

Lemma 9.2 (Neyman-Pearson) For both risk formulations the optimal test 1* takes the form

z,b*(X):{ L if pi(X)/po(X) = ¢

0, otherwise.

Here we assumed that p1(X)/po(X) = ¢ with probability zero. Note that for risk formulation 1, set ¢ = ¢
and for risk formulation 2, set ¢ such that Eg, 9" = «.

The two risk formulations can also be generalized to the composite hypothesis case:

1. For the first formulation, define

R(1,00,01) = ¢y - sup Egtp + sup Eg[1 — 1)
96, 06,

for some constant ¢y > 0.

2. For the second formulation with constant o € (0,1), define

Ra(¥,©0,01) = sup Eg[l — ]
0cO,

for those 1) € U, = {1 : supycg, Eo[¢] < a}.

9.3 Minimax test (minimax detection)

Definition 9.3 (minimax test) A test ™ is minimax optimal if

R(wM7 @07 61) = HJJf R(¢7 @Oa 81)

for the first formulation or
Ra(d)M7 907 91) = ’Lbln‘lf Ra(wa 907 91)
v,

Under regularity conditions, one can show that

1. The minimax risk of R(,0¢,01) is

sup {1 — ||lpo — p1ll1;p0 € conv(Py),p1 € conv(Py)}
Po,P1

and the minimax test is achieved by a Bayes test. Here conv(:) is the convex hull of a distribution
class.

2. The minimax risk of R, (1, 09, ©1) is

sup { inf E, [1—];po € conv(Py),p1 € conv(Pl)} .

po.p1 (¥EVa
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We next consider an example of high-dimensional minimax detection. Consider Oy = {fy} and ©; C R9.
Typically we assume 6y = 0 is the zero vector and O1(n,d) changes with n (the number of samples) and d
(the number of variables). The risk of a testing function is defined as

R(wa @05 ®1> = E@ow + sup E’91 [1 - ¢]7
0€O,

or under a Bayesian formulation

R(1, 00, 01) = Egyt) + / Eo,[1 — ¢]dm(61)

S]]
with respect to some prior distribution 7 over ©;. Under the high-dimensional testing scenario, we usually

adopt the following definition of asymptotic power to quantify the power of a test v:

Definition 9.4 (asymptotic power) A test ¢ is asymptotically powerful if
limR(y, Oo(n, d), ©1(n, d)) = 0.
On the other hand, 1 is asymptotically powerless if

liminf R(¢, ©¢(n,d),01(n,d)) = 1.

n—oo

Let’s now consider the example of high-dimensional normal mean testing problem. We have
H()ZN(O,I), Hl:N(0,I),

where 6 € ©1(n,d) = {0 € R?: ||0]|2 > 7.4} The goal is to find the fastest rate of 7, 4 going to zero while
still making the test asymptotically powerful. As a perhaps simpler example, consider low-dimensional linear

regression
HO:BZ()v Hlﬂ#o

For fixed design X € R™*? a natural test is to consider || X XTy||2. Under H, we have

Therefore, the test is powerless if
IXBI3
min(n, d)

— 0.



