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2.1 Recap!

As discussed in Lecture 1(Oct 27), general strategy to obtain minimax rates yields

infsupEp [w(d(d, ()] > w()int max, By, (9(X) %),

2 where ¢ : X — {0, ---, M} is a test function, and d(6;, 6;) > 26 for all i # j (26-packing®). Denote

pe(bo, -+, Onr) = igfmj&lxIP’aj (Y(X) # 7).

Now next job is to lower bound p. by constant. If
Pe = ¢ 20,

then w(d)c is a lower bound and w(§) = w(d,) — 0 will give you a rate, when 6 = 6,, — 0 as n — oo.* This
rate is optimal if you can find a 6(X) such that xxxx

sup Epw (d(é(X), 9)) =0 (w(5,)).
Pep

2.2 Distance between probability distributions®

Let P, @ be two probability measures on (£2,.4), having densities p and ¢ with respect to some dominating
measure (i.e. Lebesgue measure on R?). e.g., p = P + Q.

2.2.1 Total variation distance

Definition 2.1 ¢
drv (P, Q) = ||P = Ql|rv := §u§|P(A) - Q(A)].
€

ISee Section 2.2 in [T2008], p.79-80

2Proposition 2.3 in [D2014], p.13

3Section 2.2.1 in [D2014], p.13

4Equation (2.3) in [T2008], p.80

5See Section 2.4 in [T2008], p.83-91

6Definition 2.4 in [T2008], p.83 and Equation (1.2.4) in [D2014], p.7
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Then following holds:”

e dry is a metric.

e 0<dry <1.

dry =0 if and only if P = Q.

dpry =1 if and only if P and @ are singular, i.e. there exists A such that P(A) =1 and Q(4) =

e dry is a very strong distance.

Lemma 2.2 Scheffe lemma.®

drv (P, Q) = / Ip(x) — q(z)|du(z)
Proof: Take A={z € 2 : q(z) > p(z)}. [

2.2.1.1 Interpretation of dry

Suppose we observe X coming from either P or Q. And we have hypothesis test as

Hy: X ~PvsHy: X ~Q.

1 X f
Now for any test ¢(X) — {0,1} with interpretation as ¢(X) = comes rom Q, Type I error is
0 X comes from P

Ep [¢(X)], and Type II error is Eg [1 — ¢(X)]. Then

L= dry(P, Q) = inf {Ep [4(X)] +Eq [1 - (X))

for all tests(measurable functions) ¢ : 2~ — {0, 1} : exercise. Proof: Use Neyman-Pearson Lemma, the

optimal test is ¢(z) = {1 q(x) > p(x)

. |
0 g(z) <plz)

More generally,
1 .
3 Ipal=dre(P.Q) =1~ [ win{p(a).g(a)ds}

follows from Scheffe lemma. Then following holds:

fogoitfy g (P Eoll} 2 / min {p(z), ()} = 1 - drv (p, q).

7See Properties of the total variance distance in Section 2.4 in [T2008], p. 84
8Lemma 2.1 in [T2008], p. 84
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2.2.2 Hellinger

Definition 2.3 °

H(P,Q) = V [ (Vo) - Va@) duto)

Then following holds:'°

H(P, Q) is a L2 distance between ,/p and ,/q.

H(P, Q) gives canonical notion of regularity for statistical model: when 4/p(z) is Hadamard differen-
tiable.

H(P, Q) is a metric.
0< H?(P,Q)<2.

(P, Q) =2 |1- /% Vr@Va@dp(z)

Hellinger Affinity

Tensorization'!: if P = @ P; and Q = ®Q;, then
i=1 i=1

(PQ—Q[ f[( P“Q)ﬂ.

i=1

2.2.3 KL Divergence

Definition 2.4 12

KL(P, Q) = {f% log 2 p(x)du(z) P < Q

00 otherwise

Then following holds:'?

KL(P, Q) >0.
KL(P, Q) =0 if and only if P = Q.

It is not symmetric and does not satisfy triangle inequality.

e Tensorization'?: if P = @ P; and Q = ®Q;, then
i=1 i=1

KL(P, Q) = Y KL(P;, Q).

i=1

9Definition 2.3 in [T2008], p.83, and Equation (2.2.2) in [D2014], p.15
108ee Properties of the Hellinger distance in Section 2.4 in [T2008], p.83
M Equation (2.2.5) in [D2014], p.15
2Definition 2.5 in [T2008], p.84, and Section 1.2.2 in [D2014], p.5-7
13See Properties of the Kullback divergence in Section 2.4 in [T2008], p.83
M Equation (2.2.4) in [D2014], p.15



2.2.4 y*-divergence

Definition 2.5 )
o) = V(56 1) a@duta) i P<Q
00 otherwise.

Then following holds::*>

(P, Q) = [ (22) g(w)du(z) ~ 1.
e \3(P, Q) equals f-divergence!'S, with f(z) = (z — 1)%
e Tensorization: if P = @ P; and Q = QQ;, then
i=1 i=1

n

(P =] -x*P.Q)] .

i=1

2.2.5 Relationships among dry, H, KL, and x?
o 1 dry(P, Q) = [min{p,qhde > [ ypgda]’ = § [1 - ZAP@] a7

1H*(P, Q) < drv(P, Q) < H(P, Q)\/1 - 29 < [(P, )18

Lemma 2.6 (Donoho, Liu, 91) (“tensorization of dpy”)

2\ 1/n
Ifdry(P,Q) <1-— (1_25 ) for some § € (0,1), then dpy (P™, Q™) <6

Proof:
drv(P",Q") < H(P", Q")

[1- (- drv(P.Q) ]

IN
0’1&

Theorem 2.7 (Pinsker inequality)'?

ary (P, Q) <\ FHL D)

15See Properties of the x2 divergence in Section 2.4 in [T2008], p.83
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16For any function f, f-divergence is defined as D¢ (P, Q) = Sor f (p(x)) g(z)dp(z). Refer to Section 1.2.3 in [D2014], p.7

(z)
TLemma 2.3 in [T2008], p.86
8Lemma 2.3 in [T2008], p.86, and Proposition 2.4.(a) and Section 2.6.1 in [D2014], p.15, 30

YLemma 2.5 in [T2008], p.88, and Proposition 2.4.(b) and Section 2.6.1 in [D2014], p.15, 30-31
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« KL(P, Q) < (P, Q).2

o drv(P, Q) < H(P, Q) < VKL(P, Q) < /X3(P, Q). *

2.2.6 Minimax lower bounds based on 2 hypotheses

Recall that p.(Py, P1) = iﬁﬂg%}ipi ((X) # i). Now we want to lower bound it [d(6(FPp),0(P1)) > 26]

Theorem 2.8 22 1) If dpy (Py, Pi) < a(< 1), then pe(Py, Py) > 152 (total variation version).
2) H*(Py, P1) < (< 2), then p, > 1 [1 —\/a(1—=2)| (Hellinger version,).

3) If KL(Py, P) < a < 00, X2(Py, P1) < a < 00, then p. > max {ie‘x, - 2a/2} (Kullback/x? version).

ﬁ

Proof: 2) and 3) are based on 1).
1):

Do = i{},fﬁ%fipi (V(X) #1)

> iﬁf %PO (h(X) #0) + %Pl (P(X)=1)

1
= iiﬁf [type I error + type II error]
1
2

[1—drv(P,Q)].

2.3 Le Cam’s Lemma

Lemma 2.9 Le Cam Lemma (Bin Yu’s paper®®)
O = {Q(P), Pe P} SUppOSe 3@17@2 C O such that d(91792) > 25, Vo, € @1, YOy € ©Oy. Let P; C P
consisting of all P € P such thath (P) € ©,. Let co(P;) be convex hall of P;, i =1,2. Then

infsupEp [w (a(0,0(P))] = w() sup [1 —dry (P1, Po)].
0 PeP Pi€co(P1),P2Eco(Po)———~—
J min{p1,p2}

Proof: Take w(z) =z

20Lemma 2.7 in [T2008], p.90

21Lemma 2.4 and Equation (2.27) in [T2008], p.90
22Theorem 2.2 in [T2008], p.90

23Lemma 1 in [Y1997], p.424-425
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M =25upEp [d(é,a(P))} > Ep, [d(é,@ﬁ} +Ep, [d(@@z)}

for any P; € co(P;). Since

d(0,01) +d(0,0,) > d(©1,04) > 26,
by hypothesis

d(6,04) & d(6,©,)

M>20 | E
> jo 55 P, o
— 20
o< f 0<g
- 6f79201,nf+g21 P [f(X)] + Ep, [9(X)]

> 20 [1 —drv(Py, P2))

Example. Taking mixtures may help.
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Suppose P = {N(0,1) : § € R} and O(N(0, 1)) = 6, and you want to lower bound minimax rate for 6(P).

If we consider P; ~ N(6, 1) and P> ~ N(0, 1), then

dry(N(6, 1), N(0, 1)) ~ \/Z|0| +0(6%) as 6 — 0.

However, if we consider P; = {N (6, 1), N(—6, 1)} and Py = 5 [N(—0, 1) + N(6, 1)] € co(Py), then

drv (; [N(—6,1) + N(6,1)], N(0, 1)> ~ 0°®(1) + O(8") as 6 — 0,

where @ is pdf of N(0, 1). Hence taking mixtures gives better lower bound.
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