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2.1 Recap1

As discussed in Lecture 1(Oct 27), general strategy to obtain minimax rates yields

inf
θ̂

sup
P∈P

EP
[
w(d(θ̂, θ(P ))

]
≥ w(δ)inf

ψ
max

j=0,··· ,M
Pθj (ψ(X) 6= j) ,

2 where ψ : X → {0, · · · , M} is a test function, and d(θi, θj) ≥ 2δ for all i 6= j (2δ-packing3). Denote

pe(θ0, · · · , θM ) = inf
ψ

max
j

Pθj (ψ(X) 6= j).

Now next job is to lower bound pe by constant. If

pe ≥ c ≥ 0,

then w(δ)c is a lower bound and w(δ) = w(δn)→ 0 will give you a rate, when δ = δn → 0 as n→∞.4 This

rate is optimal if you can find a θ̂(X) such that xxxx

sup
P∈P

EPw
(
d(θ̂(X), θ)

)
= O (w(δn)) .

2.2 Distance between probability distributions5

Let P,Q be two probability measures on (Ω,A), having densities p and q with respect to some dominating
measure (i.e. Lebesgue measure on Rd). e.g., µ = P +Q.

2.2.1 Total variation distance

Definition 2.1 6

dTV (P, Q) = ||P −Q||TV := sup
A∈A
|P (A)−Q(A)|.

1See Section 2.2 in [T2008], p.79-80
2Proposition 2.3 in [D2014], p.13
3Section 2.2.1 in [D2014], p.13
4Equation (2.3) in [T2008], p.80
5See Section 2.4 in [T2008], p.83-91
6Definition 2.4 in [T2008], p.83 and Equation (1.2.4) in [D2014], p.7
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Then following holds:7

• dTV is a metric.

• 0 ≤ dTV ≤ 1.

• dTV = 0 if and only if P = Q.

• dTV = 1 if and only if P and Q are singular, i.e. there exists A such that P (A) = 1 and Q(A) = 0.

• dTV is a very strong distance.

Lemma 2.2 Scheffe lemma.8

dTV (P, Q) =
1

2

∫
X

|p(x)− q(x)|dµ(x)

Proof: Take A = {x ∈X : q(x) ≥ p(x)} .

2.2.1.1 Interpretation of dTV

Suppose we observe X coming from either P or Q. And we have hypothesis test as

H0 : X ∼ P vs Ha : X ∼ Q.

Now for any test φ(X) → {0, 1} with interpretation as φ(X) =

{
1 X comes from Q

0 X comes from P
, Type I error is

EP [φ(X)], and Type II error is EQ [1− φ(X)]. Then

1− dTV (P, Q) = inf
φ
{EP [φ(X)] + EQ [1− φ(X)]}

for all tests(measurable functions) φ : X → {0, 1} : exercise. Proof: Use Neyman-Pearson Lemma, the

optimal test is φ(x) =

{
1 q(x) ≥ p(x)

0 q(x) < p(x)
.

More generally,

1

2

∫
|p− q| = dTV (P,Q) = 1−

∫
X

min {p(x), q(x)dx}

follows from Scheffe lemma. Then following holds:

inf
0≤f≤1

EP [f ] + EQ [1− f ] =

∫
X

min {p(x), q(x)} dx

inf
f, g≥0, f+g≥1

{EP [f ] + EQ[g]} ≥
∫

min {p(x), q(x)} = 1− dTV (p, q).

7See Properties of the total variance distance in Section 2.4 in [T2008], p. 84
8Lemma 2.1 in [T2008], p. 84
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2.2.2 Hellinger

Definition 2.3 9

H(P, Q) =

√∫
X

(√
p(x)−

√
q(x)

)2

dµ(x)

Then following holds:10

• H(P, Q) is a L2 distance between
√
p and

√
q.

• H(P, Q) gives canonical notion of regularity for statistical model: when
√
p(x) is Hadamard differen-

tiable.

• H(P, Q) is a metric.

• 0 ≤ H2(P, Q) ≤ 2.

• H2(P, Q) = 2

1−
∫

X

√
p(x)

√
q(x)dµ(x)︸ ︷︷ ︸

Hellinger Affinity

.

• Tensorization11: if P =
n⊗
i=1

Pi and Q =
n⊗
i=1

Qi, then

H2(P, Q) = 2

[
1−

n∏
i=1

(
1− H2(Pi, Qi)

2

)]
.

2.2.3 KL Divergence

Definition 2.4 12

KL(P, Q) =

{∫
X log p(x)

q(x)p(x)dµ(x) P � Q

∞ otherwise

Then following holds:13

• KL(P, Q) ≥ 0.

• KL(P, Q) = 0 if and only if P = Q.

• It is not symmetric and does not satisfy triangle inequality.

• Tensorization14: if P =
n⊗
i=1

Pi and Q =
n⊗
i=1

Qi, then

KL(P, Q) =

n∑
i=1

KL(Pi, Qi).

9Definition 2.3 in [T2008], p.83, and Equation (2.2.2) in [D2014], p.15
10See Properties of the Hellinger distance in Section 2.4 in [T2008], p.83
11Equation (2.2.5) in [D2014], p.15
12Definition 2.5 in [T2008], p.84, and Section 1.2.2 in [D2014], p.5-7
13See Properties of the Kullback divergence in Section 2.4 in [T2008], p.83
14Equation (2.2.4) in [D2014], p.15
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2.2.4 χ2-divergence

Definition 2.5

χ2(P, Q) =


∫ (p(x)

q(x) − 1
)2

q(x)dµ(x) if P � Q

∞ otherwise.

Then following holds::15

• χ2(P, Q) =
∫ (p(x)

q(x)

)2

q(x)dµ(x)− 1.

• χ2(P, Q) equals f -divergence16, with f(x) = (x− 1)2.

• Tensorization: if P =
n⊗
i=1

Pi and Q =
n⊗
i=1

Qi, then

χ2(P,Q) =

n∏
i=1

[
1− χ2 (Pi, Qi)

]
.

2.2.5 Relationships among dTV , H, KL, and χ2

• 1− dTV (P, Q) =
∫

min{p, q}dx ≥ 1
2

[∫ √
pqdx

]2
= 1

2

[
1− H2(P,Q)

2

]2
.17

• 1
2H

2(P, Q) ≤ dTV (P, Q) ≤ H(P, Q)
√

1− H2(P,Q)
4 ≤ H(P, Q).18

Lemma 2.6 (Donoho, Liu, 91) (“tensorization of dTV ”)

If dTV (P,Q) ≤ 1−
(

1−δ2
2

)1/n

for some δ ∈ (0, 1), then dTV (Pn, Qn) ≤ δ.

Proof:

dTV (Pn, Qn) ≤ H(Pn, Qn)

=

√√√√2

[
1−

n∏
i=1

(
1− H2(P,Q)

2

)]

≤
√

2
[
1− (1− dTV (P,Q))

2
]

≤ δ.

Theorem 2.7 (Pinsker inequality)19

dTV (P, Q) ≤
√
KL(P, Q)

2
.

15See Properties of the χ2 divergence in Section 2.4 in [T2008], p.83
16For any function f , f -divergence is defined as Df (P, Q) =

∫
X f

(
p(x)
q(x)

)
q(x)dµ(x). Refer to Section 1.2.3 in [D2014], p.7

17Lemma 2.3 in [T2008], p.86
18Lemma 2.3 in [T2008], p.86, and Proposition 2.4.(a) and Section 2.6.1 in [D2014], p.15, 30
19Lemma 2.5 in [T2008], p.88, and Proposition 2.4.(b) and Section 2.6.1 in [D2014], p.15, 30-31
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• KL(P, Q) ≤ χ2(P, Q).20

• dTV (P, Q) ≤ H(P, Q) ≤
√
KL(P, Q) ≤

√
χ2(P, Q). 21

2.2.6 Minimax lower bounds based on 2 hypotheses

Recall that pe(P0, P1) = inf
ψ

max
i=0,1

Pi (ψ(X) 6= i). Now we want to lower bound it [d(θ(P0), θ(P1)) ≥ 2δ]

Theorem 2.8 22 1) If dTV (P0, P1) ≤ α(≤ 1), then pe(P0, P1) ≥ 1−α
2 (total variation version).

2) H2(P0, P1) ≤ α(≤ 2), then pe ≥ 1
2

[
1−

√
α
(
1− α

2

)]
(Hellinger version).

3) If KL(P0, P1) ≤ α <∞, χ2(P0, P1) ≤ α <∞, then pe ≥ max

{
1
4e
−x,

1−
√
α/2

2

}
(Kullback/χ2 version).

Proof: 2) and 3) are based on 1).

1):

pe = inf
ψ

max
i=0,1

Pi (ψ(X) 6= i)

≥ inf
ψ

[
1

2
P0 (ψ(X) 6= 0) +

1

2
P1 (ψ(X) = 1)

]
=

1

2
inf
ψ

[type I error + type II error]

=
1

2
[1− dTV (P,Q)] .

2.3 Le Cam’s Lemma

Lemma 2.9 Le Cam Lemma (Bin Yu’s paper23)

Θ = {θ(P ), P ∈ P}. Suppose ∃Θ1,Θ2 ⊂ Θ such that d(θ1, θ2) ≥ 2δ, ∀θ1 ∈ Θ1, ∀θ2 ∈ Θ2. Let Pi ⊂ P
consisting of all P ∈ P such thath θ(P ) ∈ Θi. Let co(Pi) be convex hall of Pi, i = 1, 2. Then

inf
θ̂

sup
P∈P

EP
[
w
(
d(θ̂, θ(P ))

)]
≥ w(δ) sup

P1∈co(P1),P2∈co(P2)

[1− dTV (P1, P2)]︸ ︷︷ ︸∫
min{p1,p2}

.

Proof: Take w(x) = x

20Lemma 2.7 in [T2008], p.90
21Lemma 2.4 and Equation (2.27) in [T2008], p.90
22Theorem 2.2 in [T2008], p.90
23Lemma 1 in [Y1997], p.424-425
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M = 2sup
P∈P

EP
[
d(θ̂, θ(P ))

]
≥ EP1

[
d(θ̂,Θ1)

]
+ EP2

[
d(θ̂,Θ2)

]
for any Pi ∈ co(Pi). Since

d(θ̂,Θ1) + d(θ̂,Θ2) ≥ d(Θ1,Θ2) ≥ 2δ,

by hypothesis

M ≥ 2δ

EP1

d(θ̂,Θ1)

2δ︸ ︷︷ ︸
0≤f

+ EP2

d(θ̂,Θ2)

2δ︸ ︷︷ ︸
0≤g




≥ 2δ inf
f,g≥0, f+g≥1

EP1
[f(X)] + EP2

[g(X)]

≥ 2δ [1− dTV (P1, P2)]

Example. Taking mixtures may help.

Suppose P = {N(θ, 1) : θ ∈ R} and θ(N(θ, 1)) = θ, and you want to lower bound minimax rate for θ̂(P ).
If we consider P1 ∼ N(θ, 1) and P2 ∼ N(0, 1), then

dTV (N(θ, 1), N(0, 1)) ≈
√

2

π
|θ|+ o(θ2) as θ → 0.

However, if we consider P1 = {N(θ, 1), N(−θ, 1)} and P1 = 1
2 [N(−θ, 1) +N(θ, 1)] ∈ co(P1), then

dTV

(
1

2
[N(−θ, 1) +N(θ, 1)] , N(0, 1)

)
≈ θ2Φ(1) +O(θ4) as θ → 0,

where Φ is pdf of N(0, 1). Hence taking mixtures gives better lower bound.
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