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1.1 Minimax Theory

Minimax theory is used to show that a statistical procedure has good performance. It characterises the
intrinsic difficulty of a statistical problem.

Example 1.1 Sparse Regression: Let Y = X3 + ¢ where f € R?, € ~ N,,(0,1,,) and d > n. (We are
interested in d > n.) Let € Bo(k) where Bo(k) = {8 € R%; ||Bllo < k}. Let 3 = argminge ) [|Y — X8|
be the estimator. It can be shown that for some ¢ > 0,

co’klog(d/k)

masx B[ - 6] < T

ﬂEBo(k)
Under some assumptions on X, we can show that there exists ¢’ > 0,

co?klog(d/k)

inf max Eg[||3 — 21>
of o B5[15 - o] > T

Here o2klog(d/k)/n is the minimaz rate and the estimator 3 is said to be minimaz optimal.

1.1.1 General Set Up
1.1.1.1 Step 1
Let P be a class of prob distributions on (X, B), P = {pg;0 € O}. Below are some examples.

1. pg = N(0,1,;) where § € © C R% For instance, © = {0;|0]|o < k} is the set of k-sparse vectors, or
© = By(r) is the {;-norm ball of radius 7.

1/q
2. Approximately sparse regression: Y = X3+ ¢ where 3 € {8 € R%; (Z?Zl |ﬂi|q) <r}and q € [0,1].
3. Hypothesis testing: Y = X3 + € and [ is k-sparse. The null is Hy : = 0.

4. Nonparametric regression: Observe Y}*, where Y; = f(X;) + ¢;, X; ~ Unif(0,1) and ¢; ~ N(0,02) for
all i and f € F where F is a class of smooth functions. We would like a lower bound of the form,

inf sup E[||f — 3] > ctbn
f fer

for some constant c.
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5. Density Estimation: We observe X{' ~ p € P where P is a class of smooth densities. We would like a
result of the form,

inf sup B, [[|p — pllq] = et
P peP
N.B. 1.2 When P = {py; 0 € ©} it is instructive to think of 0 as the map 6 : P — ©.

1.1.1.2 Step 2
Let d: © x © — R be a semi-metric; i.e. it satisfies the following:

e d(0,0) =d(¢,0) for all 0,0" € O.
e d(0,0") <d(6,0")+d(0",0") for all 6,6",0" < ©.
e d(6,0) = 0.

1.1.1.3 Step 3

Define the “loss function” w : [0,00) — [0, 00), where w # 0 and w(0) = 0. Some examples are w(z) = x?

and w(z) = 1(z > 7).

1.1.2 Minimax Risk

Given X7' ~ p € P we would like to estimate 6(p) for an estimator 6: X" — 0. The point-wise risk at p is
E,[w(d(8,6))]. Some examples:

1. In estimation, w(d(6,6)) = ||6 — 0]2.

2. In hypothesis testing, P = {po,p1} and ¢ : X" — {0,1} (¢(X7") = 1 means we reject Hy). The risk is
coE[p(X)] + a1 E[1 — ¢(X)]. (This doesn’t fall into the above framework.)

Definition 1.3 (Maximal Risk) The mazimal risk for an estimator 0 is

n(8) = sup Epfw(d(9,6))]
peEP

Typically, we have an upper bound of the form 'yn(é) < Cv,, where ¢, — 0 as n — 0.

Definition 1.4 (Minimax Risk) The minimax risk is the infimum of v, over all estimators 0,

R(n,P) = inf sup E,[w(d(0,0))]

It is a problem dependent quantity and doesn’t depend on the statistical procedure.

Suppose we have an estimator satisfying v, (0) € O(¢%). Then v} is the optimal rate of convergence if
R(n,P) € Q). Then we have R(n,P) € O(1F).
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1.2 A General Strategy to Obtain Minimax Rates

We follow a three step procedure:

1. Reduction to a probability bound:
Ep[w(d(0,0))] = w(0)P(d(0,0) > 6)
2. Reduction to a finite number of hypotheses,

inf sup P, (d(6, 6(p)) > §) > inf max P,(d(d,0(p)) > 9)
6 peP 6 PEPM

(%)
where Py = {pGovpﬁla s )peM} CcP.

3. Recast (%) as a hypothesis testing problem where pg,,po,, .- ., Ps,, are possible distributions and we
need to select (based on our observations X7') which of them has produced X7'.

For step 3, we usually use a 26 packing argument. Suppose that d(6(p;),0(p;)) > 20 for all i # j. Denote
the minimum distance test by ¢*(X) = argmingero 1, ary d(6,60(px)). Then by the triangle inequality, for

anyé .
Py, (d(0,0(pi)) > 6) > Py, (6" (X) # 4)
Then, X
inf sup P, (d(0,0(p)) > &) > inf P, (¢*(X) # j).
it sup p,; (d(0,0(p)) > 06) > inf ahax p; (07 (X) # J)
Ppe(m,0)

Any lower bound for p.(m,d) will give a lower bound for estimation. In particular, if pe(m,d) > ¢ > 0 then
R(n,P) > c-w(d). Usually § = §,, depends on n and d,, — 0. For this to be a mimimax rate we should find
6 such that ~,(0) € O(w(d,)).

We have two competing objectives in choosing Pas = {po,p1,---,PMm}:

e Choose pg,p1,...,pam So that they are maximally separated in the d-metric.

e However, probabilistically they should be indistinguishable. That is, a testing problem involving these
distributions should be difficult.



