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1.1 Minimax Theory

Minimax theory is used to show that a statistical procedure has good performance. It characterises the
intrinsic difficulty of a statistical problem.

Example 1.1 Sparse Regression: Let Y = Xβ + ε where β ∈ Rd, ε ∼ Nn(0, In) and d > n. (We are

interested in d� n.) Let β ∈ B0(k) where B0(k) = {β ∈ Rd; ‖β‖0 ≤ k}. Let β̂ = argminβ∈B0(k) ‖Y −Xβ‖
2

be the estimator. It can be shown that for some c > 0,

max
β∈B0(k)

Eβ [‖β̂ − β‖2] ≤ cσ2k log(d/k)

n

Under some assumptions on X, we can show that there exists c′ > 0,

inf
β̂

max
β∈B0(k)

Eβ [‖β̂ − β0‖2] ≥ c′σ2k log(d/k)

n

Here σ2k log(d/k)/n is the minimax rate and the estimator β̂ is said to be minimax optimal.

1.1.1 General Set Up

1.1.1.1 Step 1

Let P be a class of prob distributions on (X ,B), P = {pθ; θ ∈ Θ}. Below are some examples.

1. pθ = N (θ, Id) where θ ∈ Θ ⊂ Rd. For instance, Θ = {θ; ‖θ‖0 ≤ k} is the set of k-sparse vectors, or
Θ = Bq(r) is the `q-norm ball of radius r.

2. Approximately sparse regression: Y = Xβ + ε where β ∈ {β ∈ Rd;
(∑d

i=1 |βi|q
)1/q

≤ r} and q ∈ [0, 1].

3. Hypothesis testing: Y = Xβ + ε and β is k-sparse. The null is H0 : β = 0.

4. Nonparametric regression: Observe Y n1 , where Yi = f(Xi) + εi, Xi ∼ Unif(0, 1) and εi ∼ N (0, σ2) for
all i and f ∈ F where F is a class of smooth functions. We would like a lower bound of the form,

inf
f̂

sup
f∈F

E[‖f̂ − f‖22] ≥ cψn

for some constant c.
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5. Density Estimation: We observe Xn
1 ∼ p ∈ P where P is a class of smooth densities. We would like a

result of the form,
inf
p̂

sup
p∈P

Ep[‖p̂− p‖q] ≥ cψn

N.B. 1.2 When P = {pθ; θ ∈ Θ} it is instructive to think of θ as the map θ : P → Θ.

1.1.1.2 Step 2

Let d : Θ×Θ→ R be a semi-metric; i.e. it satisfies the following:

• d(θ, θ′) = d(θ′, θ) for all θ, θ′ ∈ Θ.

• d(θ, θ′) ≤ d(θ, θ′′) + d(θ′′, θ′) for all θ, θ′, θ′′ ∈ Θ.

• d(θ, θ) = 0.

1.1.1.3 Step 3

Define the “loss function” w : [0,∞) → [0,∞), where w 6= 0 and w(0) = 0. Some examples are w(x) = x2

and w(x) = 1(x > τ).

1.1.2 Minimax Risk

Given Xn
1 ∼ p ∈ P we would like to estimate θ(p) for an estimator θ̂ : Xn → Θ. The point-wise risk at p is

Ep[w(d(θ̂, θ))]. Some examples:

1. In estimation, w(d(θ̂, θ)) = ‖θ̂ − θ‖22.

2. In hypothesis testing, P = {p0, p1} and φ : Xn → {0, 1} (φ(Xn
1 ) = 1 means we reject H0). The risk is

c0E[φ(X)] + c1E[1− φ(X)]. (This doesn’t fall into the above framework.)

Definition 1.3 (Maximal Risk) The maximal risk for an estimator θ̂ is

γn(θ̂) = sup
p∈P

Ep[w(d(θ̂, θ))]

Typically, we have an upper bound of the form γn(θ̂) ≤ Cψn where ψn → 0 as n→ 0.

Definition 1.4 (Minimax Risk) The minimax risk is the infimum of γn over all estimators θ̂,

R(n,P) = inf
θ̂

sup
p∈P

Ep[w(d(θ̂, θ))]

It is a problem dependent quantity and doesn’t depend on the statistical procedure.

Suppose we have an estimator satisfying γn(θ̂) ∈ O(ψ∗n). Then ψ∗n is the optimal rate of convergence if
R(n,P) ∈ Ω(ψ∗n). Then we have R(n,P) ∈ Θ(ψ∗n).
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1.2 A General Strategy to Obtain Minimax Rates

We follow a three step procedure:

1. Reduction to a probability bound:

Ep[w(d(θ̂, θ))] ≥ w(δ)P(d(θ̂, θ) ≥ δ)

2. Reduction to a finite number of hypotheses,

inf
θ̂

sup
p∈P

Pp(d(θ̂, θ(p)) > δ) ≥ inf
θ̂

max
p∈PM

Pp(d(θ̂, θ(p)) > δ)︸ ︷︷ ︸
(?)

where PM = {pθ0 , pθ1 , . . . , pθM } ⊂ P.

3. Recast (?) as a hypothesis testing problem where pθ0 , pθ1 , . . . , pθM are possible distributions and we
need to select (based on our observations Xn

1 ) which of them has produced Xn
1 .

For step 3, we usually use a 2δ packing argument. Suppose that d(θ(pi), θ(pj)) ≥ 2δ for all i 6= j. Denote

the minimum distance test by φ∗(X) = argmink∈{0,1,...,M} d(θ̂, θ(pk)). Then by the triangle inequality, for

any θ̂
Ppj (d(θ̂, θ(pi)) > δ) ≥ Ppj (φ∗(X) 6= j)

Then,
inf
θ̂

sup
p∈PM

Ppj (d(θ̂, θ(p)) > δ) ≥ inf
ψ

max
j∈{0,1,...,M}

Ppj (φ∗(X) 6= j)︸ ︷︷ ︸
pe(m,δ)

.

Any lower bound for pe(m, δ) will give a lower bound for estimation. In particular, if pe(m, δ) ≥ c > 0 then
R(n,P) ≥ c ·w(δ). Usually δ = δn depends on n and δn → 0. For this to be a mimimax rate we should find

θ̂ such that γn(θ̂) ∈ O(w(δn)).

We have two competing objectives in choosing PM = {p0, p1, . . . , pM}:

• Choose p0, p1, . . . , pM so that they are maximally separated in the d-metric.

• However, probabilistically they should be indistinguishable. That is, a testing problem involving these
distributions should be difficult.


