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In this lecture, we continue our discussion of the Le Cam equation, which is a method for obtaining minimax
lower bounds using Fano’s method (see, e.g., http://projecteuclid.org/download/pdf_1/euclid.aos/
1017939142).

4.1 Brief recap of Fano’s method

We begin with a brief recap of Fano’s method; in Fano’s method, a minimax lower bound (i.e., on the
minimax risk) is given as

w(δ)

(
1− I(X;V ) + log 2

log(m+ 1)

)
,

where w : R+ → R+ is the loss function assumed to be nondecreasing and satisfying w(0) = 0, δ > 0, m+ 1
is the size of our hypothesis class, and I(X;V ) is the mutual information of the data X and the random
variable V taking values in our hypothesis class.

We have a minimax lower bound if we can show that

I(X;V ) + log 2

log(m+ 1)
(4.1)

is less than or equal to (say) 1/2.

Here is the idea behind the Le Cam equation. Let us find an εn that satisfies

nε2n = logN(εn),

where N(εn) is the smallest number of balls of radius ε needed to cover our hypothesis space in the Hellinger
distance sense. Then, if we can show that

I(X;V ) ≤ nε2n,

by plugging this bound into (4.1), requiring that the resulting quantity be less than or equal to (say) 1/2,
and rearranging (we also use the subadditivity of log), we get that we must have

log(m+ 1) ≥ 4nε2n + 2 log 2 (4.2)

in order to have a minimax lower bound; i.e., we choose δn, where m = m(2δn), such that (4.2) holds in
order to get a minimax lower bound.
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4.2 Holder class of functions

Before we see some examples, let us make a few definitions.

Let X ⊆ Rd be a closed and convex set.

Let f : X → R.

Let Dk be the (higher order partial) differential operator, i.e.,

Dk =
∂k

∂xk11 · · · ∂x
kd
d

,

where k =
∑d
i=1 ki.

Let β ∈ (0,∞) with bβc denoting the largest integer (strictly) less than β.

Let

‖f‖β = max
k≤bβc

sup
x,y∈X

∣∣∣∣∣Dkf(x)−Dkf(y)

‖x− y‖β−bβc2

∣∣∣∣∣ .
Finally, let the Holder class of functions Σ(X , β,M) be

{f : X → R : ‖f‖β ≤M} ;

in words, this is the set of all functions (from X to R) whose 1st through bβc (inclusive) derivatives are
Lipschitz continuous (when β is integral) with constant M .

4.3 Examples

4.3.1 Density estimation

Suppose X1, . . . , Xn are drawn i.i.d. from some distribution f ∈ Σ(X , β,M), and we wish to estimate f .
Assume there exist constants c, C > 0 s.t. c ≤ f(x) ≤ C for all x ∈ X and all f ∈ Σ(X , β,M). Then if εn
is such that nε2n = logN(εn) (i.e., it satisfies the Le Cam equation), it turns out that ε2n gives the minimax
rate in `2.

4.3.2 Nonparametric regression

Suppose yi = f(xi) + εi, where ε1, . . . , εn are i.i.d. N (0, σ2) and X1, . . . , Xn are deterministic, and f ∈
Σ(X , β M). It turns out that the Le Cam equation gives the minimax rate n−β/(2β+d), which is the classic
rate.

4.3.3 Least squares

Here, we want to find

f̂ = argmin
g∈F

(1/n)

n∑
i=1

(yi − g(xi))
2
.
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Let us consider the task of upper bounding

Ef∗

[
(1/n)‖f̂ − f∗‖22

]
= Ef∗

[
(1/n)

∑
i

(
f̂(xi)− f∗(xi)

)2]
.

Now, since f̂ is optimal and feasible and f∗ is (clearly) feasible, we have

(1/n)‖y − f̂(X)‖22 = (1/n)
∑
i

(
yi − f̂(xi)

)2
≤ (1/n)‖y − f∗(X)‖22, (4.3)

where we written y = (y1, . . . , yn), X = [x1, . . . , xn]. Similarly, letting ε = (ε1, . . . , εn), we write y =
f∗(X) + ε, plug this quantity into (4.3), and eventually get that

(1/n)‖f̂ − f∗‖22 ≤ (2/n)
∑
i

εi

(
f̂(xi)− f∗(xi)

)
 
(
(2σ)/

√
n
)∑

i

wi

(
f̂(xi)− f∗(xi)

)
/
√
n,

where  denotes convergence in distribution and w1, . . . , wn are i.i.d. N (0, 1).

Now, letting G = {(f − f ′)/
√
n : f, f ′ ∈ F}, we have that this quantity is upper bounded by(

(2σ)/
√
n
)

sup
g∈G

∑
i

wig(xi),

which implies that

Ef∗

[
(1/n)‖f̂ − f∗‖22

]
≤
(
(2σ)/

√
n
)
Ef∗ sup

g∈G

∑
i

wigi(xi).

Now, let g(1), . . . , g(N(ε)) be an ε-cover of G. Then for all g ∈ G∑
i

wig(xi) =
∑
i

wig
(j)(xi) +

∑
i

wi

(
g(xi)− g(j)(xi)

)
,

where g(j) is the closest point to g amongst g(1), . . . , g(N(ε)).

This implies that

sup
g∈G

∑
i

wig(xi) ≤ max
j=1,...N(ε)

∑
i

wig
(j)(xi).

By Jensen’s inequality, we have that

Ef∗ sup
g∈G

∑
i

wig(xi) ≤ Ef∗ max
j

∑
i

wig
(j)(xi) + ε

√
Ef∗

∑
i

w2
i

≤ Ef∗ [max of N(ε) normal r.v.’s] + ε
√
n

≤

√√√√2

(
max
j

∑
i

g(j)(xi)

)2

logN(ε) + ε
√
n,

which has the form of a Le Cam equation.

Combining this result with the metric entropy for the Holder class of functions, i.e.,

logN (ε,Σ(X , β,M), ‖ · ‖∞) � (1/ε)d/β ,

we finally get that

Ef∗

[
(1/n)‖‖f̂ − f‖22

]
=
(
(2σ)/

√
n
) (√

2σ2n1/3 + n−1/3
√
n
)
� n−1/3.


