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7.1 Assouad Method

Theorem 7.1 (Assouad) Suppose ∃m ∈ N, a sub-family {Pv : v ∈ {−1, 1}m} ⊆ P, and a function
V : θ(P)→ {−1, 1}m, such that

w (d(θ, θ(Pv))) ≥ 2δ

m∑
j=1

I{V (θ)j 6=vj} , ∀v ∈ {−1, 1}m .

That is, for ∀v ∈ {−1, 1}m, there exists Pv ∈ P, such that ∀v 6= v′,

w(d(θ(Pv), θ(Pv′))) ≥ 2δ

m∑
j=1

I{vj 6=v′j} = 2δ dH(v, v′) .

Then we have
inf
θ̂

sup
P∈P

EP
[
w(d(θ̂, θ(P )))

]
≥ mδ min

v,v′∈{−1,1}m
dH(v,v′)=1

{1− dTV (Pv, Pv′)} .

Proof: Let V ∼ Unif({−1, 1}m) and P±j be the conditional distribution of (X,V ) given Vj = ±1. Notice
that

P±j =
1

2m−1

∑
v∈{−1,1}m

Pv,±j ,

where Pv,±j is Pv with vj = ±1. Then ∀θ̂,

sup
P∈P

EP
[
w(d(θ̂, θ(P )))

]
≥ 1

2m

∑
v∈{−1,1}m

EPv

[
w(d(θ̂, θ(Pv)))

]

≥ 1

2m

∑
v∈{−1,1}m

2δ

m∑
j=1

Pv

(
V (θ̂)j 6= vj

)

= 2δ

m∑
j=1

1

2m

 ∑
v∈{−1,1}m

vj=1

Pv

(
V (θ̂)j 6= vj

)
+

∑
v∈{−1,1}m
vj=−1

Pv

(
V (θ̂)j 6= vj

)
= 2δ

m∑
j=1

1

2

[
P+j

(
V (θ̂)j 6= 1

)
+ P−j

(
V (θ̂)j 6= −1

)]
≥ 2δ

m∑
j=1

[1− dTV (P+j , P−j)] ≥ 2δmmin
j

[1− dTV (P+j , P−j)]
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Finally, observe that

dTV (P+j , P−j) ≤
1

2m−1

∑
v

dTV (Pv,+j , Pv,−j) ≤ max
v,j

dTV (Pv,+j , Pv,−j) = max
v,v′

dH(v,v′)=1

dTV (Pv, Pv′) .

As a consequence, if for all v, v′ such that dH(v, v′) = 1, we have

1. dTV (Pv, Pv′) ≤ α , then the lower bound is δm2 (1− α).

2. H2(Pv, Pv′) ≤ α < 2, then the lower bound is δm2

[
1−

√
α(1− α/4)

]
.

3. KL(Pv, Pv′) ≤ α or X 2(Pv, Pv′) ≤ α, then the lower bound is δm2 max
{

1
2e
−α, 1−

√
α
2

}
.

Remark The Assouad lower bound can also be written in the following form: for p > 0,

sup
v∈{−1,1}m

EPv

[
dp(θ̂, θ(Pv))

]
≥ min
v,v′∈{−1,1}m
dH(v,v′)≥1

dp(θ(Pv), θ(Pv′))

dH(v, v′)
· m

2
min

v,v′∈{−1,1}m
dH(v,v′)=1

[1− dTV (Pv, Pv′)] .

Proof: Let V (θ̂) ∈ {−1, 1}m such that

V (θ̂) = v∗ if d(θ̂, θ(Pv∗)) = min
v∈{−1,1}m

d(θ̂, θ(Pv)) .

Then for any v ∈ {−1, 1}m, by triangle inequality, we have

d
(
θ
(
PV (θ̂)

)
, θ(Pv)

)
≤ 2 · d(θ̂, θ(Pv)) .

Therefore,

2pEPv

[
dp(θ̂, θ(Pv))

]
≥ EPv

[
dp
(
θ
(
PV (θ̂)

)
, θ(Pv)

)]
≥ 2δ EPv

[
dH(V (θ̂), v)

]
where 2δ = minv 6=v′

dp(θ(Pv), θ(Pv′))

dH(v, v′)
. Then proceed as before to reach the desired result.

7.2 Minimax Confidence Ball

Suppose X ∼ Nn(θ, σ2
nIn), we want to construct a confidence ball Bn(X) for θ, such that

inf
θ∈Rn

Pθ(θ ∈ Bn) ≥ 1− α .

Note that ||X−θ||
2

σ2
n
∼ X 2

n , the simplest confidence ball is a X 2 ball:

Bn =
{
θ ∈ Rn : ||X − θ||2 ≤ σ2

nX 2
n,1−α

}
,

where X 2
n,1−α is the 1− α quantile of X 2

n . The radius is deterministic, which is in the order of σn
√
n.

Lepski proposed another way to construct the confidence ball Bn as follows. First, we test the hypothesis

H0 : θ = 0 v.s. H1 : θ 6= 0 .
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If we accept H0, then the ball is centered at 0, with radius σnn
1/4. Otherwise, if we reject H0, then we use

the X 2 ball with radius σn
√
n. This gives a valid (1− α) confidence ball with random radius.

In fact, in general, the rate of σn
√
n is optimal; but in some specific scenario, it might be possible to attain

σnn
1/4.

Claim Let Sn be the random radius of a ball Bn centered at any estimator θ̂ of θ that is a (1−α) confidence
ball, then there exists a constant C, such that

(i) Eθ[Sn] ≥ Cσnn1/4, for any θ ∈ Rn.

(ii) Eθ[Sn] ≥ Cσnn1/2, for some θ ∈ Rn.

Now we prove the first claim.

Theorem 7.2 Let α ∈ (0, 1
2 ), Bn = {θ ∈ Rn : ||θ̂− θ|| ≤ sn} for any estimator θ̂, such that Bn is an honest

confidence ball:
inf
θ∈Rn

Pθ(θ ∈ Bn) ≥ 1− α .

Then ∀ε ∈ (0, 1
2 − α),

inf
θ∈Rn

Eθ[Sn] ≥ σnn1/4(1− 2α− 2ε)
(
log(1 + ε2)

)1/4
.

Proof: Let an =
σn

n1/4

(
log(1 + ε2)

)1/4
, and define Ω = {θ ∈ Rn : |θi| = an, i = 1, ..., n}, hence |Ω| = 2n. Let

fθ be the density of Nn(θ, σ2
nIn), and q =

1

2n
∑
θ∈Ω fθ be the density of a mixture distribution, then

∫
|q − f0| ≤

√∫
q2

f0
− 1 .

In addition, let E1, · · · , En
i.i.d.∼ Rademacher, then∫

q2

f0
=

(
1

2n

)2 ∑
θ,θ′∈Ω

∫
fθfθ′

f0

=

(
1

2n

)2 ∑
θ,θ′∈Ω

exp

{
〈θ, θ′〉
σ2
n

}

= E
[
exp

{
a2
n

∑n
i=1Ei
σ2
n

}]
=

n∏
i=1

E
[
exp

{
a2
nEi
σ2
n

}]
=

[
cosh

(
a2
n

σ2
n

)]n
≤ exp

{
a4
n

σ2
n

n

}

So
∫
|f0 − q| ≤

√
exp

{
a4n
σ2
n
n
}
− 1 := εn. For any event A, let Q,P0 be the measure of q, f0, then

P0(A) ≥ Q(A)−
∫
A

|q − f0| ≥ Q(A)− εn .
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Now let A = {0 ∈ Bn}, D = {Ω ∩Bn 6= ∅}, and cn = ||θ|| = an
√
n for θ ∈ Ω.

Note that A ∩ D ⊆ {sn ≥ cn}. In addition, since Pθ(θ ∈ Bn) ≥ 1 − α for ∀θ, we have Pθ(D) ≥ 1 − α for
∀θ ∈ Ω. Therefore, Q(D) ≥ 1− α, and

P0(sn ≥ cn) ≥ P0(A ∩D) ≥ Q(A ∩D)− εn
= Q(A) +Q(D)−Q(A ∪D)− εn
≥ Q(A) +Q(D)− 1− εn
≥ Q(A) + (1− α)− 1− εn
≥ (P0(A)− εn) + (1− α)− 1− εn
≥ (1− α)− εn + (1− α)− 1− εn
= 1− 2α− 2εn

Finally, the same argument holds for any θ ∈ Rn other than 0.

7.3 Equalizer Rule

The risk for θ̂ is R(θ, θ̂) = Eθ[d(θ̂, θ)]. Let Π be a distribution over Θ, then the Bayes risk of θ̂ is

R(θ̂,Π) =

∫
Θ

R(θ, θ̂) dΠ(θ) =

∫
X
r(θ̂|x) dµx(x)

where µx is the marginal distribution of X, and r( ˆθ|x) is the posterior risk of θ̂ given X = x. The Bayes

rule θ̂(Π) is the estimator θ̂ that minimizes R(θ̂,Π), or equivalently, minimizes r(θ̂|x) at every x.

Theorem 7.3 If a Bayes rule θ̂(Π) has constant risk, that is, R(θ, θ̂(Π)) is constant in θ, then θ̂(Π) is a
minimax estimator.

Proof: Let θ̂ be any estimator, then

sup
θ
R(θ, θ̂) ≥

∫
Θ

R(θ, θ̂) dΠ(θ) ≥
∫

Θ

R(θ, θ̂(Π)) dΠ(θ) = sup
θ
R(θ, θ̂(Π)) .


