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7.1 Assouad Method

Theorem 7.1 (Assouad) Suppose Am € N, a sub-family {P, : v € {-1,1}"} C P, and a function
V:0(P) — {—1,1}"™, such that

w (d(0,0(P,))) > 20 ) " I{viey, 20,y > Y0 € {—1,1}™.
j=1

That is, for Vv € {—1,1}™, there exists P, € P, such that Vv # v’,

w(d(B(P,), 0(Pyr))) > 26 Iy, 20y = 20 dpr(v,0).

Jj=1

Then we have

inf sup Ep [w(d(é,e(P)))} >md  min {1 —dpry(By, Py)}.
6 PepP v'e{-1,1}™
dp (v,0')=1

Proof: Let V' ~ Unif({—1,1}") and Py; be the conditional distribution of (X, V') given V; = £1. Notice
that

1
Pij = om—1 Z Pv,:ﬁ:j,
ve{-1,1}m

where P, 1; is P, with v; = £1. Then Vé7

~ 1 ~
sup Ep [w(d(0,0(P)] > 5 {Z} Ep, [w(d(@,0(P.)]

> Y wY (V) #y)
ve{—1,1}m  j=1

m

=uY | Y R(VO£w) s X R (VO), )
j=1 1)6{1)—.;,11}7" 1)611}[.—:1,_1}7”

_ Qgi% [P (VI0); #1) + Py (V) # 1))

> 28 Y [1—dry(Pyj, P-j)] > 26m min [l —dry (P, P-j)]
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Finally, observe that

1
dry (Pij, Pj) < 5oy > drv(Py iy, Poj) < H;E;XdTV(Pv,-&-jan,—j) = max drv(Py, Py).

dH(v:v')zl
]

As a consequence, if for all v,v" such that dy(v,v") = 1, we have

1. drv(Py, Py) < o, then the lower bound is 7 (1 — «).

2. H*(P,,P,) < « < 2, then the lower bound is 6% [1 —va(l- a/4)]

3. KL(P,,Py) < aor X?(P,, P,) < a, then the lower bound is 6 max{%e_o‘, 1— \/%}
Remark The Assouad lower bound can also be written in the following form: for p > 0,

: O @EP)EP) M
E {dpo,op }> ’ [ 1 — dpy (P, Py)] .
ve{s;ull,)l}m P |#6.0(R))] 2 v,v’GI?irllyl}m dpr(v,v") 2 v,v’er?irlli}m [ v (Po, Pr)]
dp (v,0')>1 dp (v,')=1
Proof: Let V(0) € {—1,1}™ such that
V() =v* if d(0,0(Py))= min d(6,0(P,)).
ve{—1,1}m
Then for any v € {—1,1}™, by triangle inequality, we have
a(0(Py)) 0(P)) <2-d(0,6(P,)).
Therefore,
PEp, [d(8,0(P,)| = Ep, [0 (0(Pyg)) 0(P))| = 20Ep, [du(V(6),v)]
] dP(0(P,),0(Py)) .

where 20 = min,, . Then proceed as before to reach the desired result. [ |

dH(v7 UI)

7.2 Minimax Confidence Ball

Suppose X ~ N, (0,021,), we want to construct a confidence ball B,,(X) for 6, such that

inf P B, >1-a.
nf 0(0 € B,) > !

Note that HXU;QG”? ~ X2, the simplest confidence ball is a X2 ball:

By ={0€R": [|IX - 0| <on X7, .}

where X2

' 1—a 18 the 1 —a quantile of X2. The radius is deterministic, which is in the order of o,,v/n.

Lepski proposed another way to construct the confidence ball B,, as follows. First, we test the hypothesis

HQZGZO’U.S.H1207£O.
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If we accept Ho, then the ball is centered at 0, with radius o,n'/%. Otherwise, if we reject Hp, then we use

the X2 ball with radius o,,v/n. This gives a valid (1 — «) confidence ball with random radius.

In fact, in general, the rate of o,,4/n is optimal; but in some specific scenario, it might be possible to attain
1/4
opnt/ .

Claim Let S, be the random radius of a ball B, centered at any estimator  of 6 that is a (1—a) confidence
ball, then there exists a constant C', such that

(i) Eg[S,] > Co,n'/?, for any 6 € R™.

(ii) Eg[Sn] > Co,nt/?, for some 6 € R™.
Now we prove the first claim.

Theorem 7.2 Let a € (0,3), B, = {0 € R": 10 —0]] < sn} for any estimator 0, such that B, is an honest
confidence ball:

inf Pp(0 € B,) >1— .

OcRn

Then Ve € (0,3 — a),
Jnf Eg[Sa] > on'/*(1 - 2a - 2¢) (log(1 + )
it

On

m(log(l + 62))1/4, and define Q@ = {§ € R" : |0;| = a,,i =1,...,n}, hence | = 2". Let
n

Proof: Let a, =

1
fo be the density of N,,(0,021,), and ¢ = 272669 fo be the density of a mixture distribution, then

/\q—fo|§ /3;—1.

In addition, let F4,--- , E, i'kd'Rademacher, then
/q2 _ (1)2 Z fofor
fo ") e fo

So [|fo—ql < y/exp {Z—zn} —1:=¢,. For any event A, let @, Py be the measure of ¢, fy, then

Po(A) > Q(4) - /A = fol = Q(A) — .
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Now let A= {0¢€ B,}, D ={QnNB, # 0}, and ¢, = ||]| = a,/n for 6 € Q.

Note that AND C {s, > ¢,}. In addition, since Py(6 € B,,) > 1 — «a for V0, we have Py(D) > 1 — « for
V6 € Q. Therefore, Q(D) > 1 — «, and

Py(sp >c¢pn) > Po(AND) > Q(AND) —e,
— Q(4)+Q(D) - QAUD) — ¢,
> Q(A)+Q(D) —1—e,
2QA)+(1-a)—1-e
> (P(A)—€e)+(1—a)—1—¢,
>l—-a)—e+(1—a)—1—¢,
=1-2a—2¢,
Finally, the same argument holds for any # € R™ other than 0. ]

7.3 Equalizer Rule

The risk for 6 is R(0,0) = Eg[d(0,0)]. Let II be a distribution over ©, then the Bayes risk of 6 is
RO.1) = [ R(6.0)d1(6) = [ r(0lo)dus(e)
e x

where p, is the marginal distribution of X, and r(9|A:17) is the posterior risk of 6 given X = z. The Bayes
rule O(II) is the estimator 6 that minimizes R(6,1I), or equivalently, minimizes r(6|z) at every x.

Theorem 7.3 If a Bayes rule O(I1) has constant risk, that is, R(0,0(I1)) is constant in 6, then O(I1) is a
minimaz estimator.

Proof: Let 6 be any estimator, then

supR(@,é)z/R(O,é)dH(Q)z/R(G,é(l’[))dl’[(@):supR(Q,é(H)).
0 (C] © (%



