

The proof uses the inequality:
\n
$$
abb \in \mathbb{R}
$$
 $1ab \in \frac{1ab}{P} + \frac{1b}{q}$ $1a \in \text{conjugate}$
\n $abb \in \mathbb{R}$ $1ab \in \frac{12}{P} + \frac{1b}{q}$ $1a \in \text{conjugate}$
\n $1ab \in \mathbb{R}$ $1ab \in \mathbb{R}$ $1ab \in \mathbb{R}$ $1ab \in \mathbb{R}$
\n $1ab \in \mathbb{R}$ $1ab \in \mathbb{R}$ $1ab \in \mathbb{R}$
\n $1ab \in \mathbb{R}$ $1ab \in \mathbb{R}$ $1ab \in \mathbb{R}$
\n $1ab \in \mathbb{R}$ $1ab \in \mathbb{R}$
\n $1ab \in \mathbb{R}$ $1ab \in \mathbb{R}$
\n $1ab \in \mathbb{R}$
\n

Gonvergence in distribution (weak convergence) This is the weakest form of stockholte convergence. Record that the cdf (commotive distribution function) of e ramition variable X aver R is the function $z \in \mathbb{R}$ \mapsto $\mathbb{P}(X \leq z) = F(z)$ It has the fallowing properties. i) It à non-decreating in) it is right-continuous with left limits $\lim_{y \downarrow x} F(y) = F(z)$ $\begin{pmatrix} \n\mu_1 & F(4) & \text{arcsis} \\ \n\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \n\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ (240) $\begin{array}{ccc} ln_1 & f(x) = 0 & \ln x & f(x) = 1 \ 1 & 2 \leq -\infty \end{array}$ In fact, any function over R with those properties defines a probability distribution over R. In R^d the notion of call is analogous. The colf Fx of a random vector X in \mathbb{R}^d is the function $x = \int_{2}^{4} \left[e^{iR} \right] dR$ \longrightarrow $F(a) = \mathbb{P} \left(\bigcap_{j=1}^{4} \left\{ X_j \le z_j \right\} \right)$ \mathbb{Z} $\left(\mathbb{Z} \right)$ 11111 A $F(x) = R(x \in A)$ In foct, properties u), m) and und still hold provided that, for $x_{i}y \in \mathbb{R}^{d}$, $x \le y$ means $x_i \le y_j$ is

To fix this we note the assumption that, for any
rectangle $A = \frac{1}{11}$ (aj, bj) $\infty <$ aj \in bj ∞ ony
 $\frac{1}{11}$ (aj, bj) $\infty <$ aj \in bj ∞
 ∞
 ∞ ∞ ∞
 ∞ ∞ ∞ ∞ ∞ ∞ ∞ $\$ Then properties i), in), in) and in) quanoihtee
that I défines a prob. distribution an IR Definition : A sequence of r.v. (or vectors) with c.d.f.) $\{F_n\}$ converges in distuibution to x , with east F_n when for every $c \in \mathbb{R}^d$ sit. F is continuous ot c, $F_n(c) \rightarrow F(c)$ os $n \rightarrow \infty$ $P(\lambda_1 \leq x) \Rightarrow P(X \leq y)$ comment-unic 50