	ar Models
Fa	II 2024
Lecture 6 -	Thu, Sep 12, 2024
Instructor: Prof. Ale Ri	inaldo
Port nonitering Theorem	
the following condi	tions are equivalent (in ore in
(λ_{n}) (λ_{n}) (λ_{n}) (λ_{n})	
m $\mathbb{E}\left[f(X_n)\right]$	$\longrightarrow E[f(X)]$ for all
bounded o	wal continuous functions
f: R [™] →	
ere) liminet l	$P(X_{\Lambda} \in G) \geq P(X \in G)$
LV) Imsip	IP(Xn GK) & IP(X GA)
v) $P(X_n \in A$	$ =) = f(x \in A) for all $
(Borel) sets A	$f = f + P(X \in \partial A) = 0$

Continuous nopping theorem: CMT

Let f: Rd -> R and let X be a roundom vector in Rd s.t. P(XEC)=1 where C is the ref of continuity points of f. Then $X_n \xrightarrow{\kappa} K \Longrightarrow f(X_n) \xrightarrow{\kappa} f(X_n)$ where x means up 1 or in probability or in distribution. Note: if f is continuous (meaning continuous at all points in its domain, which contain the image of X), the CMIT outmostically holds. Pf/ We will prove that Xn ~ X implies that f(Xn) ~ f(X) [if P(XEC)=i, C theref of continuity points of f7 see von der [2 is a continuity point of f if $\forall \{ x_u \} = \pi, \quad x_u \to x, \quad f(x_u) \to f(x)$ 6-16-22 (3)3=3E 0<34 NO $\rightarrow (f(m) - f(u)) | < \varepsilon$ Use Portmanteous Thm. Let k be a closed set in IR. $\{f(X_n) \in k\} = \{X_n \in f(k)\}$ $\{x \in \mathbb{R}^{d} : f(x) \in \mathbb{R}^{d}\}$

Then, I chaim -> A is the clasure of A $f^{-1}(k) \leq f^{-1}(k) \leq f^{-1}(k) \leq f^{-1}(k) \leq f^{-1}(k) \leq f^{-1}(k)$ To see this, toke $x \in \overline{f'(k)}$. The $\sum x_n i \subset \overline{f'(k)}$ sit. $x_n \rightarrow \infty$ and 2 & f-'(a) Then f(xn) = K all n . If x & C, they f(xn) -> f(x) = K because K is closed. $f(\pi_n) \rightarrow f(\pi) \in K$ otherwise acc ^s. 1 50 $\lim_{n} \sup_{n} R\left(f(X_n) \in K\right) \leq \lim_{n} P\left(X_n \in f^{-}(k)\right)$ by Portmonteon The $= \leq (P(X \in f^{-}(k)))$ point (iv) $\leq |P(X \in f'(k)) + P(X \in C)$ $= P(f(x) \in k),$ So $\lim_{n \to \infty} \mathbb{P}(f(X_n) \in k) \leq \mathbb{P}(f(X) \in k)$ all closed sets K. So by part (11) of Portnoistean Thin, $f(X_n) \xrightarrow{d} f(X)$

Example: we need f to be continuous (up 1 with to distribution Let $X_{n} = \begin{cases} 0 + \frac{1}{2}, & \text{with prob } \frac{1}{2} \end{cases}$
Lo $X_n \xrightarrow{d} 0$ Let $f(x) = 1 \{x \ge 0\}$ bounded continuous
but $f(x_n) \neq 1$ $f(x)$ is degenerate at 1
Example of CMT: X, X2 ~ (M, 62). They will see that
$T_n = \frac{T_n \left(X_{n-n} \right)}{6} \rightarrow N \left(0, 1 \right)$
$(T_n) \rightarrow \Lambda_r$
Charactenstic functions
Pawerful analytic approach to demonstrate convergence is distribution (and prove WILLN) and to prove CLT.
See Ferguson Chapter 3 or von der boart Section 2.3
Definition For e r.v. X e Rd, its characteristic
$function t = \mathbb{R}^d f(x(t)) = \mathbb{E}\left[\exp\{x + t^T \times \}\right]$
$= \underbrace{\mathbb{E}\left[\cos\left(t^{\dagger}X\right) + \cos\left(t^{\dagger}X\right)\right]}_{(\Delta)}$

The ch.f. of a roudon variable encodes the properties of its distribution
Continuity Theorem (Perguson Than 3e)
$ x_{n} \stackrel{d}{\longrightarrow} X \qquad \text{if} \qquad \qquad$
in) Moreover if $l(x_n(t))$ converges pointaile to e function, say $l($, continuous at 0 , they l(is the ch.f. of e normalisher variable, say X , s.t. $X_n \xrightarrow{d} X$
m) $\chi \neq \gamma$ uf $\gamma (t) = \gamma (t)$ $\forall t \in \mathbb{R}^d$
$\frac{\text{Remark}}{\binom{4}{2}} : if 2 \sim N_{d} \left(u, z^{T}\right) \text{then}$ $\binom{4}{2} \left(t\right) = \exp\left\{i t^{T} u - \frac{t^{T} z^{T} t}{2}\right\}$
Let's use ch.f. to prove will. Recall Taylor series expansion formula. Let $f: \mathbb{R}^d \rightarrow \mathbb{R}$ and assure that f has $(ktr.)$ continuous pointed derivatives at all points in an open set U . Let $z, z_0 \in U$ s.t. the line segment $\overline{zz_0} \subset U$. Then (5)

$f(x) = f(x_0) + \sum_{\substack{j=1\\j=1}^{k}}^{k} \frac{1}{k!} Df(x_0, x-20) + Rem$
where $p = \begin{cases} h = \\ h \\ h$
$\int when h=1 \qquad D^{(m)}f(x,h) = h^{T} \overline{V}f(x_{0})$
$h=2 \qquad \qquad$
$k=3$ (1) $\langle \nabla^{3}f(x_{0}),h@h@h \rangle$
] Remain the exercised as
and new re and as
Lagrangian i) $(k+i)$ $f(z, x-z_0)$ some z on $(x+i)$ $\overline{x} \cdot \overline{z}_0$
Integral ii) $\frac{1}{k!} \int \int f(\tau x + (1-\tau)x_0, x - x_0) d\tau$
Bock to ch. f. to prove WLLN : X, X2, Arm
$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
$\mathbb{P}(\mathbf{x}_{n}(t)) = \mathcal{Y}_{\mathbf{x}_{i}+\mathbf{x}_{2}+\cdots+\mathbf{x}_{n}}(t)$
$(f_{i}) = (f_{i}) + (f_{$

· · · · · ·	by $\mathcal{L} = \prod_{n=1}^{n} \mathcal{L}_{x_n}(t/n)$
· · · · · ·	becouse $X_{n} = \begin{pmatrix} \varphi_{X}(t_{n}) \end{pmatrix}^{n}$ $X_{n} = \begin{pmatrix} \varphi_{X}(t_{n}) \end{pmatrix}^{n}$ $X_{n} = \begin{pmatrix} \varphi_{X}(t_{n}) \end{pmatrix}^{n}$
· · · · · ·	$\left(\text{Notice that } \nabla q_{x}(o) = i M \text{Exercise} \right)$
· · · · · · · · · · · · · · · · · · ·	$= \left(\begin{array}{c} \varphi_{\times}(\varphi) + \int \frac{t}{n} \nabla \varphi_{\times}(\tau t_{n}) \ d \ \tau \end{array} \right)^{n}$ $= \left(\begin{array}{c} \varphi_{\times}(\varphi) + \int \frac{t}{n} \nabla \varphi_{\times}(\tau t_{n}) \ d \ \tau \end{array} \right)^{n}$
han	$S_{\sigma} = \lim_{n \to \infty} \left(1 + \int_{\sigma}^{1} \nabla \varphi_{x}(\tau t_{n}) d\tau \right)^{n}$
· · · · · ·	$\left[fact \lim_{n} (l + a_n)^n = exp \left\{ \lim_{n \to \infty} n_{a_n} \right\} if \lim_{n \to \infty} n_{a_n} \right\}$
· · · · · ·	$= \exp \left\{ \lim_{n \to \infty} \int_{0}^{t} t^{T} \nabla \varphi_{X}(\tau t_{n}) d\tau \right\}$
· · · · · · · ·	$Dominute The = exp \left\{ E \nabla \{ x (o) \} \right\} = exp \left\{ x E u \right\}$
· · · · · ·	ch f- of a degenerate t.v. at M.
· · · · · ·	· By continuity The The Sul. Therefore $\tilde{X}_n \rightarrow u$ (7)

· · · · · ·	
	Then (Cromer-Wold device) Let {X_77 be a
	Sequence of ryis in R ^d Then
· · · · · ·	$Xn \xrightarrow{d} X \qquad nf \qquad t^T Xn \xrightarrow{d} t^T X$
	Erre rowlog Vector
· · · · · ·	Record the essemple from bost three Xn = U ~ Uniform (DII)
· · · · · ·	$Y_n = \begin{cases} 0 & n even \\ 1 - 0 & odd \end{cases}$
· · · · · ·	Then [Xn] a even though Xn d U
· · · · · ·	Use Gromer-Would with $t = \begin{bmatrix} i \end{bmatrix}$. They
· · · · · ·	$t^{T} \begin{bmatrix} X_{n} \\ Y_{n} \end{bmatrix} = \begin{cases} 2 & 0 & n & even \\ 1 & 0 & even \end{cases}$
· · · · · ·	which does not converge.
· · · · · ·	8