

Continuous mapping theorem : CMT

Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ and let X be a random vector
in \mathbb{R}^d s.t. $\mathbb{P}(X \in C) = 1$ where C is the set
of continuity points of f . Then
 $X_n \stackrel{\kappa}{\Rightarrow} X \stackrel{\frown}{\Rightarrow} f(X_n) \stackrel{\kappa}{\Rightarrow} f(X)$
where x incoming in probabili in \mathbb{R}^d s.t. $\mathbb{P}(X \in C) = 1$ where C is the ref of continuity points of f . Then $X_n \Rightarrow X \Rightarrow \Rightarrow f(X_n) \Rightarrow f(x)$ where x nears up 1 or in probability or in distribution . points in its domain , which contain the image of X , the CMT automotically holds. Pf We will prove that $Xn \overset{d}{\rightarrow} X$ implies that $f(x) = \frac{1}{x} f(x)$ $\int_{1}^{x} f(x) dx = \int_{1}^{x} f(x) dx$ $f(x) = f(x)$ $f(x) = \frac{1}{x}$ π π continuity points of see van der - $\begin{array}{ccccc} \mathcal{L} & \math$ 2. [↓] Eeen3 st. an -> ⁿ $\forall \{x_n\}$ $\forall x \in \mathbb{R}$, $\forall x_n \Rightarrow x_n$, \exists $(x_n) \Rightarrow \exists x \in \mathbb{R}$ small ^O #So = : ⁼&(2) st - In-y1 d \rightarrow $[f(x)-f(y)]^c$. Use Portmanteaus the . Let k be a closed fet in IR $\{f(x_0) \in k\} =$ $\{x \in \mathbb{R}^d : f(x) \in k\}$ (2)

Then, I claim \overline{A} is the clasure of A $f^{-1}(k) = \overline{f^{1}(k)}$ \leq f^{-1} (k) V C $f^{-1}C$ To see this , $f^{-1}(k)$ \leq $f^{-1}(k)$ \cup \subset
 $f^{-1}(k)$. Then $\{x_n\}$ c $f^{-1}(k)$ sit. $x \in f^{-(\alpha)}$ Then
 $x_n \rightarrow x$ and $f(x_n) \in k$ all n If $x \in C$ then $f(x_n) \rightarrow f(x) \in K$ become K is closed. ϕ therouse $x \in C^s$. So dineralise $k \in C$ SS

lingup $P(f(x_0) \in K) \leq \lim_{n \to \infty} P(X_0 \in f^{-1}(k))$ $\frac{2}{\pi}$ lingup $\mathbb{P}(\frac{X_{n}}{n})$ by Portmouthous $f^{\prime\prime\prime}$ = $f^{\prime\prime}(X \in f^{\prime\prime}(k))$ (v) بالاتهم \leq $|P(X \in f^{n}(k)) + P(X \in C)$ I by assuptor $=$ $P(f(x) \in k)$. So $\left(\begin{array}{cc} \n\sqrt{1-x^2} & \n\sqrt{1-x^2} & \n\end{array}\right) \in \mathbb{P}\left(\sqrt{1-x^2}\right) \in k\right)$ all closed sets ^K . So by part (iv) of Portmantean Tun , $f(x_1) \stackrel{d}{\Rightarrow} f(x)$ $\frac{1}{\sqrt{2}}$ ⑬

The oh.f. of a roundom variable encoder the properties of He distribution (Ferguson Than 3e) Continuity Theorem $X_n \stackrel{d}{\longrightarrow} X$ $\text{iff} \qquad \text{if} \qquad \text{if$ \mathcal{N} $W \in \mathbb{R}^d$ μ) Moreover if $\psi_{x_{n}}(t)$ converges pointains to e function, say U, continuous ot 0, they If is the ch.f. of a roundon variable, say X, $S +$ $X_1 \stackrel{d}{\Rightarrow} X$ $\psi_{X}(t) = \psi_{Y}(t)$ $\forall t \in \mathbb{R}^{d}$ $(x -)$ $\chi = \frac{d}{2}$ μ ² $1 + \frac{2}{\pi} \sim N_d(\mu, \Sigma)$ they Remark $\left(\frac{1}{2}(t) = exp \left\{ i \frac{t^{2}}{4} - \frac{t^{2}}{2} \frac{t^{2}}{2} \right\} \right)$ Let's use chef to prove will Recoll Taylor series exponsion formula Let $f: \mathbb{R}^d \to \mathbb{R}$ and assure that f has $(k+1)$ continuous partial derivatives at all points in an open set $U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ bet $x_{c}x_{0} \in U$ s.t. The line sequent $\overline{220}$ \subset \cup . Then (5)

by

indep $U = \prod_{\tilde{N}=1}^{n} \varphi_{X_{\tilde{N}}}(\tilde{\tau}/n)$ become
 $X \cap B$ have $X \cap B$ and $X \cap B$ are diffusion = $(\psi \times (b/a))$ $X \stackrel{d}{=} X$ and X $M = 700t$ $\sqrt{400t}$ $\sqrt{400t}$ $\sqrt{400t}$ $\sqrt{400t}$ $\sqrt{400t}$ $\sqrt{400t}$ $\sqrt{400t}$ $\sqrt{400t}$ = $(\varphi_{\mathsf{x}}(\mathsf{o}) + \int \frac{t^{\pi}}{\pi} \nabla \varphi_{\mathsf{x}}(\tau t_{\mathsf{n}}) d\tau)$ I_{tan} $\left(\begin{array}{ccc} l & + & \int_{0}^{1} & \frac{t^{T}}{R} \mathcal{P} \varrho_{k}(\tau t_{A}) d\tau \end{array}\right)^{n}$ $\int_{\Omega} \text{ foot } \lim_{n} (L + \sigma_n)^n = \exp \left\{ \lim_{n \to \infty} n \sin \left\{ \frac{n \mu}{n} \cdot n \sigma_n \right\} \right\}$ Dominated

Compagnue Thin

= exp { ϵ $\nabla \varphi_{\mathsf{X}}$ [0)} = exp { ϵ t^2 a} $ch + of = degene in + IN.$ $\begin{matrix} 2\pi & 1\ 1 & 1\ \end{matrix}$
Therefore $\begin{matrix} 2 & 1\ 1 & 1\ \end{matrix}$ By continuity The $\frac{1}{2}$ $\frac{1}{2}$

Than (Cromer-Wold device) Let {x,] be a Sequence of ruis in R^d. Then $x_0 \xrightarrow{d} x$ $x \mapsto \pi f$ $t^T x_0 \xrightarrow{d} t^T x$ $H \in \mathbb{R}^d$ Some roundry the essample from lost three
Xn = U / Unyform COII) Récord $M_{n} = \sum_{l=1}^{n} U_{l}$ n even \bullet dd $\left[\begin{array}{c} x_{1} \\ y_{2} \end{array}\right]$ $\frac{d}{dx}$ even though Then $X_n \stackrel{d}{\Rightarrow} U$ $y_n = \frac{d}{2} U$ Cromer- Krould with $t = \int_{0}^{t} 1 dt$. They $\begin{bmatrix} \mathcal{L}^{\top} & \mathcal{L$ even $\sum_{i=1}^{n}$ Which does not converge <u>(8)</u>