

By Taylor serie expansion of ℓ (t/r_a) around 0. $+\frac{1}{2}\frac{c^{2}}{n}t^{2}\int_{0}^{1}\nabla\varrho\left(\frac{1}{\sqrt{n}}\right)d\mu\right|^{2}$ $(X) = \begin{pmatrix} 1 & \hat{1} & \hat{1$ = $\left(1+\frac{1}{n}\frac{1}{2}x^{2}t^{2}\right)^{1}$ an Next $-\frac{t^{2}}{2} \sum_{1}^{t} \int \frac{1}{t^{2}} dt = -\frac{t^{2}}{2} \sum_{1}^{t} t^{2}$.
الحام it is one to bring line? Becover $(1 + cn)^n = exp \sum mn n c_n 3$ ιf ι ι ι ι ι ι ι $l(n(\tilde{x}_{1-a})$ (t) \Rightarrow exp $\{-65t\}$ as 100 $dh: f. \quad \mathsf{of} \quad \mathcal{N}_d(Q, \mathcal{Z})$ By Continuity Theorem for ch. p's $\sqrt{n}(\overline{X}_{n}-\mu) \Rightarrow N(\overline{Q}_{c} \leq)$ \bigcirc

· CLT: Triangular array versum A triangular array is on infuncte collection of ruls { Xin, LEN} arganized in this nouncer. $\mathbf{X}_{\mathbf{Q}}$ $X_{i,2}$ X_{22} $X_{1,3} = X_{2,3} = X_{3,3}$ $X_{i,n} = X_{i,n} - X_{i,n}$ The nois of the otray consist of independent r.v.'s. The Lindeberg-Febler CLT. Let {X1, } be a trangular array of 1-4, & in IR. $s +$ $E[X_{n,q}] = 0$ $Y_{n,q}$ Let $S_n = \frac{1}{n} \times \frac{1}{n}$ and $B_n = \frac{1}{n} \times \frac{1}{n}$ where 6^{2} and 8^{2} $\sqrt{2}$ \sqrt $S_n = \frac{1}{n} N \log(t)$ If the LF (Lindeburg Feller) condition (LF) $V_{2>0}$ $\frac{1}{B_n^2}$ $\frac{21}{1-t}$ $E[X_{n,n}^{2} 1\{[X_{n,n}] > cB_n^2\}]$ $\frac{0}{10}$ $\frac{0.5}{0.25}$ (5) is net

Conversely, if $\frac{S_n}{B_n} \Rightarrow N(0,1)$ and if $\frac{2}{(1-x^2)^{1/2}}$ $\frac{2}{(1-x^2)^$ (LF) holds. then · Opten, it is easier to establish a CLT via Lyapumous countrion $\frac{1}{13n^{2+6}}$ $\frac{21}{121}$ $E\left[\frac{1}{x_{nn}}\right]^{2+6}$ $\rightarrow \infty$ HWI 5 ane 5 >0.
This implies LF. it requires existence of
moments higher than 2. The nuttivariate case Consider a triangular array of centered ramon vectors in Let $Y_{n,n} = \begin{pmatrix} n \\ 2^{n} & \cos \left[\frac{1}{2}x_{n,n}\right] \\ 1 & \cos \left[\frac{1}{2}x_{n,n}\right] \end{pmatrix}$ $X_{n,n}$ Then, if $Hess_{p} \qquad \lim_{n \to \infty} \sum_{k=1}^{n} E\left[Wx_{k,n}|^{2} 4 \tfrac{1}{2}Wx_{k,n}|^{2} > \epsilon \right] = 0$ $\frac{1}{2}$ (LP) $\sum_{i=1}^{n} Y_{i,n} \Rightarrow N(0, I_d)$