SDS 387 Linear Models	
Fall 2024	
Lecture 9 - Tue, Sep 24, 2024	· · · · ·
Instructor: Prof. Ale Rinaldo	
CLT: Lindeberg - Feller (LF)	indep.
Let {X; n} is is n=1,2, be a	riangulor
Lo different natortion than Lost t	lme $X_{n,j}$
n: index for n th row of the triangular arre	ey i
s.f. $\mathbb{E}\left(X_{i,n}\right) = D$ $\overline{t_i}$, to and le	e (e (
$B_{n}^{2} = \sum_{j=1}^{n} G_{n,j}^{2} \qquad G_{n,j}^{2} = Var \left[\times \right]$	n, j. J
Then $\frac{\sum_{j=1}^{n} \chi_{j,n}}{B_{n}} \xrightarrow{d} N(0,1)$	
$ (LF) \qquad \underbrace{\int_{B_n^2}^{n} \underbrace{E\left[X_{j,n}^2 1 \leq l \times j, n \right] \leq e B}_{j=1} } $	n -> 0
$e \leq n \rightarrow \infty$ $\forall \epsilon > 0$	

• Conversely, if $\frac{3!}{j=i}$	$\frac{X_{v,y}}{B_{n}} \rightarrow N(0,1)$ and
$ \lim_{\substack{j=1,\ldots,n\\\beta_n}} \frac{\sigma_{j,n}^2}{\beta_n^2} \rightarrow 0 $	os noc they (LF) holds.
. The proof is based on	use of ch.f. See, e.g., Petrov.
A stronger condition 35>0 s.t. $\frac{1}{2+5}$ $\frac{1}{j=1}$ E	$\frac{1}{\left[X_{i,n}\right]^{2+\delta}} = \frac{1}{2} $
<u>Example</u> $y_j = Bernor$	uli(pi) independent
Let $X_j = Y_j - p_j$	$\left(\begin{array}{c} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{$
Under what conditions do we have a cl	on the sequence [pj] T?
Use Lyapunov with	S = ((we control 3 moment)
Let $6^{L}_{J} = Vav [X_{J}]$ $\mathbb{E} \left[[X_{J}]^{2} \right] \leq 6^{2}_{J}$	$= \rho_{j} (l - l_{j}), \text{The } q$

$\frac{1}{2} = \frac{1}{2} \left[\left[X_{3} \right]^{3} \right]^{2+\delta}$
$\frac{1}{B_n^3} = \frac{1}{B_n^3} = \frac{1}{B_n^3}$
$\mathcal{B}_{n}^{2} = \sum_{j=1}^{2} \mathcal{B}_{j}^{2} = \sum_{j=1}^{2} \mathcal{P}_{j}(1-\mathcal{P}_{j})$
This quartity will varish as $n \rightarrow 0$ if $\int_{J=1}^{\infty} p_{s}(1-p_{s}) \rightarrow \infty$
the multivariate case: d>1 bot fixed (not increasing with n!)
Consuler a triangular array of centered d-olimensional romlom vectors {Xi, a} i=n st. Var (Xi, n) excerts. Let
$Y_{i,n} = \left(\begin{array}{c} y_{i,n} \\ y_{i,n} \end{array} \right) X_{i,n}$
$(LF) \qquad \qquad$
Then $\sum_{j=1}^{n} Y_{j,n} \xrightarrow{s} N_{j}(0, \mathbb{I})$
Pf/ Use Cromer-World device. Let's first consider paints $t \in S^{d-1} = \{x \in \mathbb{R}^{d} : \ x_{i}\ = i\}$

	So we need to show that, $\forall t \in S^{d-1}$ $t^T \stackrel{n}{\underset{i=1}{\overset{j}{=}}} Y_{ij,n} \stackrel{d}{\longrightarrow} N(0,1)$ $(4 it \\ 1 \neq 1, the limiting distribution will he N(0 t \\ 1 \neq 1)$
· ·	First, notice that for $t \in S^{d-i}$ $\frac{2i}{v=i}$ Var $\left[t^T Y_{j,n}\right] = 1$
	So, using the LF for universal CLT we only need to look of the sequence $E\left[\left(t^{T}Y_{i,n}\right)^{2} 1\left\{it^{T}Y_{i,n}\right\} > E\right]$ $= i \qquad $
· ·	But this easily follows from bounding the bast expression by
· · · · · · · · · · · · · · · · · · ·	$\frac{1}{2^{-1}} \text{IF} \left[\left\ Y_{j,n} \right\ ^{2} \right] \stackrel{1}{\rightarrow} 0$ by assumption. where the colciliations for the are $\frac{1}{2^{-1}} \stackrel{1}{\leftarrow} 1$
· · · · · · · ·	

BERRY-ESSEEN BOUNDS -> See Petrovis book This result indicates have fort the CLT approximation works. finite sample Let X1, X2, ... be independent V.V.'s s.t. E[X1]=0 $Var[Xi] < G_{2}^{2} < \infty$ and $\mathbb{E}[[X_{n}]^{3}] < \infty$, all i Ls stronger condition than (LF) They $\sup_{x \in \mathbb{R}} \left| P\left(\frac{2!}{\frac{1}{1}} \times \frac{1}{1} + \frac{1}{1}\right) - \frac{1}{1} \left(\alpha \right) \right| \leq C \frac{2!}{\frac{1}{1}} \frac{E[X_{1}]^{3}}{B_{n}^{3/2}}$ $\int_{x \in \mathbb{R}} \frac{1}{\frac{1}{1}} \int_{x \in \mathbb{R}} \frac{1}{1} \int_{x \in \mathbb{R}} \frac{1}{1}$ When $6^2 = 6^2$ all i and $Fe[1 \times 1^3] \le 42$ all i then the RHS of this bound is upper bounded by $C = \frac{n \, \mu_3}{n^{3/2} e^{-3/2}} = \frac{C}{\sqrt{n}} = \frac{\mu_3}{6^3}$ Example: X, X2, independent with X. Servedli(pi) where $p_n \in [\mathcal{E}, 1 - \mathcal{E}]$ all i Then, we saw that, $\mathbb{E}\left[\left|X_{n-p-1}\right|^{3}\right] \leq p_{n}(1-p_{n})$ So the Berry - Esseen bound us 5

 $\sum_{\lambda=1}^{2^{\prime}} \rho_{\lambda} \left(\left(-\rho_{\lambda} \right) \right)$ $\left(\begin{array}{cc} \frac{2t}{2} & \rho_{\perp} \left(t - \rho_{\perp} \right) \end{array}\right)^{3t_{2}}$ $\sqrt{p} \varepsilon (1-\varepsilon)$ We can allow E= En to also algoent on n: En-20 CLT works as long as $N \varepsilon_1(1-\varepsilon_1) \rightarrow \infty$ So sn can to but slover than 1/n. We also st version of Berry - Esseen is (see Petrov). Assume only that $E[I \times n]^{2+\delta}] < co$ all z, $S \in (0,1]$ They sub $x \in \mathcal{R}$ $\left| P\left(\frac{z' \times z}{B_n} \leq n\right) - \Phi(x) \right| \leq C \frac{z' |E[1 \times n|^{z+\varepsilon}]}{B_n}$ General way of Thinking about CLT: replace each Xi by a Zn NN(E[Xi], Var[Xi]) Then "well-behaved, functions of the Xi's have a distribution that is close to that of the some function of the 2's. In general we can frome this tosk (i.e. the tosk of demonstrating a Gaussian approximation) as follows. (6)

· ·	Let F be a close of functions. Then we wont to bound: independent sup $\left[E\left[f\left(X_{1},,X_{n}\right)\right] - E\left[f\left(Z_{1},,Z_{n}\right)\right] \right]$ $f \in F$ where Z_{n} NN ($E[X_{n}]$, $V_{21}[X_{n}]$) Far example, take $F = \begin{cases} 1(-\infty,n], x \in \mathbb{R} \end{cases}$ and bound
	$ \frac{1}{feF} \left[\frac{f}{f} \left(\frac{z' \times n}{Bn} \right) \right] - \frac{f}{FeF} \left[\frac{f}{f} \left(\frac{z'}{Bn} \right) \right] $ $ \frac{1}{FeF} \left[\frac{f}{FeF} \left(\frac{z'}{Bn} \right) \right] - \frac{f}{FeF} \left[\frac{f}{FeF} \left(\frac{z'}{Bn} \right) \right] $
 	. We can take F to be any class of functions are line.
· · · · · ·	
 	
· · · · · · ·	
· · · · · ·	\mathcal{D}