

 ϵ S \sim $\left(|a - y| \right)^2 \leq |f| x - y | \left(|x - y| \right)^2 + \left| \frac{e^{2x}}{x - y} \right|^2 = \left| \frac{e^{2x}}{x - y} \right|^2 + \left| \frac{e^{2x}}{x - y} \right|^2$ $\begin{array}{ccc} \mathbb{R}^2 &=& \mathbb{R}^2 \ &=& \mathbb{$ $= 11x - 971$ · A projection obes not here to be orthogonal $I(x-y)^2$ \leq $1(x-y)^2 + U(y-y^2)^2 = 12 - 9 + 12$
 $\leq x-y^2$
 $\leq y^2-y^2$
 $\leq y^2-y^2$
 $\leq 1(x-y^2)^2$
 $\leq 1(x$ Orthogonal projection in general a projection onto a linear subspace S or a mapping $T : \mathbb{R}^d \to S$ is avrt c $T \circ T(x) = T \left(T(x) \right) = T(x) \left(T(x) \text{ if } x \text{ is an identity when } x$ \Rightarrow so $T(x) = x$ \uparrow $x \in S$ A non-orthogonal projection is an oblique · Orthogonal projections are linear mappings ! For a linear subspace S in \mathbb{R}^d of dimension $1 \le r \le n$ the orthogonal $pr\rho$ projection of n onto S is given by Pa ⁼ ^y ⁼ S dxd where P is a projector or projection

 $tbot$ sortsfies these defining properted
defining properted
projection () $P^2 = P$ (idempotent) orthogonality in) P is symmetric In fact, any deal in R^d with these propetics
is a projector P is positive semi-defuncte $ExercR$ $P_{x} = P_{x}$ implies) Projectors are unique (ie Exercise let $A = st.C(A)=S$ Explicit expression for P d
columns form a borst Then . $P = A \underbrace{(A^T A)}_{i \text{avartible}} A^T$ of A ore orthonormal $A = \begin{bmatrix} a_1 & a_1 \end{bmatrix}$, then $P = AA^T$ and $Pa = 2^T$ du $\langle a_{11}x \rangle$ linear combinations of

Simple approch: treat A as a vector in IR and
mxn
epply any vector norm. Example Norm indiced by
inner products.) $||A||_{\infty} = m x \cdot |A_{\infty}|$ Fratural novous $V \leq A_{i,j} = \sqrt{\text{tr}(A^T A)} = \sqrt{\text{tr}(A A^T)}$ $\left\Vert \mu\right\Vert A\left\Vert \right\Vert _{\mathcal{F}}\left\Vert \right\Vert =% \mathcal{F}^{1}\left(\mathcal{F}\right) ,$ $=\sqrt{\frac{\frac{1}{2}(\frac{2}{x})^{10}}{x^{10}}(4)}$ Frakences singular values of A 11-1/p is unitarily invariant. Also $\frac{1}{n+m}$ axa $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ orthogonoul Another type of motux norm is the p - Schotten $p = schotten$ norm of A is
 $||A||_p = \left(\frac{rank(A)}{\sum\limits_{n=1}^{s} log_p(A)}\right)^{1/p}$ $\rho \geq 1$ the singular values of A $II - IIe$ is the 2- schotters over 1- schotten norm is colled the nuclear norm the $et A$

the ∞ schotten is colled the operator norm Holder's inequality holds: $l < A, B > l = MAU_{\rho}$ $ll Bk_{q}$ $\frac{1}{\rho} + \frac{1}{9} = 1$ type
we can defune a third of norm for
using the notion of operator norm. Frankly: instrices $L \leq \rho, q \leq \infty$ the ρ, q goerator norm of \mathcal{A} \forall des cons from $\max_{\kappa \in \mathbb{R}^2} \|\mathcal{A}_k\|_q$ $||A||_{\rho,q}$ = $||x||_p = \frac{1}{y}e^{iR}$
 $||x||_p = \frac{1}{y}e^{iR}$
 $||x||_p = |x|$
 $||x||_p = 1$ $k \times l \geq 1$ bluebily Examples
bluebily Examples This gives is the spectral or operator. $||A||_{\text{ap}} = \text{map} ||Ax|| = \sqrt{\text{large}(ATA)}.$ $\rho = q = 2$ $= 6 \text{ max} (A)$ Lougest singular value $\|A\alpha\| \leq \|A\|_{\infty}$ $\alpha\|$ $Exercke$