

 $\left(\begin{array}{cc} \mathcal{A} & \mathcal{A} \end{array} \right)$ if $\mathcal{R}(k) = \mathcal{A}(k)$ ($\mathcal{A}(k)$) then $\mathcal{R}(k) = \mathcal{D}_{P}(k \times n)$ ^e) · Last time : linear regression modeling $\begin{array}{ccc} & & E & \left[\begin{array}{c} 4 & 1 & x & -x \\ & & & \\ \end{array} \right] & = \\ \end{array}$ some $\beta \in \mathbb{R}^d$ regiessen universate a demeusional function response variable vector of covariates Remarks marks w) linearity here refers to i 13 We would call this model : $E[Y|X=z] = \phi(x)^T/S$ P = uR $^{\circ}$ also linear ω) linearity here refers to ω /

Thus madel:
 $E[Y|X=z] = \phi(x)^{T}/s$

also lineari where $\phi: \mathbb{R}^{d} \to \mathbb{R}^{d}$

a feature vector Esample
 $E[Y|X=z] = \alpha_{0} + \alpha_{1}z + \alpha_{2}z$ is t incorrector E somple
tore vector E somple
 $E[f(X,z)] = \alpha_0 + \alpha_1 z + \alpha_2 z$ us a linear model $a + \alpha_2 a$

neou model

(m («p.a. («r))). en) Typically we include on intercept term in the regression function : $E[Y1X = x] = \beta_0 + x^7/3$ This is important for ANOVA testing and for a correct interpretation of R^2 coefficient. We will always include the intercept , thong we will not write this explicitly. You can thi of ^X or $\Phi(X)$ as a vector where first coordinate

Thin If I is invertible and I has 2 moments $\mathcal{B}^* = \mathcal{E}^{\uparrow} \mathbb{E} \left[\mathbb{V} \times \right]$ is the minimizer of $E[(X73)^{2}]-2E\left[\mathbb{E}[Y1X]X^{7}]\right]$ are $W = \beta \in \mathbb{R}^d$ Become of noment assumptions we can towe the derivative out to 3 inside the expectation and obtain the first order aptimality conditions
 $E[X \times X] \cap Z = Z$ $E[\begin{bmatrix} EXX \end{bmatrix} \times X] = S$ $S_{\infty}(\omega \uparrow \circ \gamma)$ S_{∞} $\mathbb{E} \left[X X^T \right]^{-1} \mathbb{E} \left[Y X \right]$ By convexity. This is unique ! Remark: What is 3"? It it is the vector of crefficients of the L2 projection of Y onth the linear spay of X (the vector space of all linear functions) · B^{*} is vector neasuring linear association between 4 and χ

Prediction In prediction (the noir objective of ML models), we won't to predict a new response, say inew Our good is the to minimize $using \times \frac{new}{new}$ The prediction envoy, ce to solve the problem
min. F. (Ynew - (Xnow) (3)?) β ick^d grediction mst of course the solution is β^* . Suppose we instead use a different rector BGRd tou longe is the error tend we make by using the wheng 3? $E\left[\left(Y - X^T/3\right)^2\right] = E\left[\left(Y - X^T/3\right) + X^T/3\right] - X^T/3\right]^2$ $E\left[\left(1 - x^{\tau} \beta^{k}\right)^{2}\right] + E\left[\left(X^{\tau} \left(\beta^{k} - \beta\right)\right)^{2}\right] \wedge$ $+ 2 E [Y - X^7 3^4] X (3^4 - 8)]$ $= 0$ by orthogonal γ of projection L_{2} $E\left[\left(\frac{y}{1-x^{2}}\right)^{2}\right] + \left(\beta^{2} \beta\right)^{2} \leq \left(\beta^{2} - \beta\right)$ $11/3^* - 31^2$ systematic error

If $E[Y|X] = X^T/3^*$ then the systematic
error is usually united of 6^2 , the variance of Y
 $(E \cdot g, \text{ assuming } Y = X^T/3 + \epsilon)$ where $E \sim (D_L 8^2)$ $\epsilon \perp X$ auril $1/3 - 1/12$ à mesure of hou vell we
over estimating the true regression function E DATA Suppose we observe e sample (M, X,), (Yn, X,) of m points of not reducestions from the joint distribution of 4 one X. 1 will arrive $Y = \begin{bmatrix} Y_t \\ \vdots \\ Y_m \end{bmatrix} \in \mathbb{R}^n$ and $X = \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix}^T$ or $\overline{\Phi} = \begin{bmatrix} \psi(K_1) & \cdots & \psi(K_n) \end{bmatrix}^T$ To estimate β^* we will minimize the empirical $\sim 10^{10}$ km s $^{-1}$ MSE or predictive visie. $\hat{R}(\beta) = \frac{1}{n} \sum_{n=1}^{n} (y_{n} - \Phi(x_{n})^{T}\beta)^{2}$ expectations
unt
empired to $f(Y - \Phi(X))$ 1、儿中一鱼人们

leest - > Ordinary squares . The OLS estimator of β^* is the minimizer of $R(A)$ over all $A \in \mathbb{R}^d$ · This Assume that Φ is of full column rank Then $(ild{b}) = d \le n$ $\frac{1}{3}$ stimator of 3^* is the minimized
over oil 3^* is the minimized
over oil $3 \in \mathbb{R}^d$.
That is of full estimated
over $\widehat{\mathbb{Q}}$ is of full estimation
(rouk ($\overline{\mathbb{Q}}$
 \mathbb{Q}) \oplus \mathbb{Z}) \oplus \mathbb{Z} $=$ $\sum_{n=1}^{n}$ $\frac{1}{2}$ 201 estumn r

(ronk)
 $\frac{1}{2}$
 $\frac{1}{2}$
 where $\frac{\partial}{\partial n} = \frac{\text{OPT}}{n} = \frac{1}{n} \frac{\partial}{\partial n} = \frac{1}{n} \frac{\partial}{\partial n} = \frac{1}{n}$ $R(s) = \left(\frac{1}{\Phi} \cdot \frac{1}{\Phi} \cdot \frac{1$ Φ ath row of Φ Φ_{\sim} it is Φ_{\sim} it is Φ_{\sim} it is Φ_{\sim}

(Notice that $\hat{\beta} = (\mathbb{E}_{n}[\Phi(x) \Phi(x)]^{T} \mathbb{E}_{n} [Y \Phi(x)]$ where $E_n[.]$ expectation · where E_n . unt empired measure Pf/ $\beta \rightarrow \hat{R}(A)$ is convex because Φ is of
 Γ strict convexity follows because full columns

the Hessian of $\hat{R}(A)$ is Φ of $\frac{\hat{R}(B)}{\hat{R} \hat{R}}$ which is pot ful columns [strict convexity follows because by
assumption] So the minimizer is found by first order optimality $contribution$: $\nabla \hat{R}(\lambda) = 0$ solve for λ

