· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	SDS 387 Linear Models
	Fall 2024
Le	ecture 15 - Thu, Oct 17, 2024
Instructor: P	rof. Ale Rinaldo
	· · · · · · · · · · · · · · · · · · ·
· Reminder: no cla	iss on The, Det 22
+ HW3, Q2 + it	- was rewritten and simplified. In the
solutions, you It vn (will find the following result: $(x_1 - m) \xrightarrow{d} X$ and $g''(m) \neq 0$
then n	$\left[g(\tilde{X}_n) - g(\tilde{w})\right] \xrightarrow{d} g''(\tilde{w}) \stackrel{\chi^2}{2}$
Thus , if	$V_n \left(\widehat{X}_n - \mu \right) \xrightarrow{d} N \left(O_y G^2 \right)$
· · · · · · · · · · · · · · · · · · ·	$\left(\hat{\chi}_{\eta}^{2}-\mu^{2}\right) \xrightarrow{q} \delta^{2} \chi_{1}^{2}(\mu^{2})$
which is we	all defined the eliR
• Uses Lemma Let R: R	2.12 in Vonder Vaert $d^d \rightarrow R$ s.t. $R(0) = 0$. Let $\{x_n\} \subset R^d$ s.t.

$AR(h) = O(\ h\)^{p} \text{then} R(X_{1}) = Op(\ X_{1}\)^{p}$
 Lost time: linear regression modeling FE[Y] X = x] = x^T/3 some /3 etR^d requession universate variable variable
Remarks i) linearity here refers to in 15. We would
call this model: $E[Y X=2] = \phi(a)^T B$ $B = (R^d)$
also Ineor, where $\phi: R^d \rightarrow R^{d'}$ is
a feature vector. Example
$F[Y X=2] = \alpha_0 + \alpha_1 a + \alpha_2 a^2$ $(s = lineou model)$ $(un (\alpha_0, \alpha_1, \alpha_2)).$
in) Typically we include an intercept term in the
$\mathbb{E}\left[\frac{41\times 2}{5}\right] = /35 + 27/3$
This is important for ANOVA testing and for
a correct interpretation of R ² coefficient.
the will always include the intercept, thoug we will
not write this explicitly. You can thim of X
or $\Phi(X)$ as a vector where first coordinate

is non-random and equal to 1
 2 inferrential to-ses: 1) statistical inference about /3
2) prediction
statistical inference
If the model is well-specified (i.e. E[YIX=2]=Bz
then B is dearly the pavameter of interest.
what it F [41x=2] is not linear? In this
mis-specified setting we need to first identity the
target parameter. This can be defined by
bouchon of the best linear approximation to
$\left[\left[\left$
$\beta^{*} = exgmin \qquad \text{E} \left[\left(\text{E} \left[\frac{1}{3} \right] - \frac{1}{3} \right)^{2} \right]$ $\beta \in \mathbb{R}^{d}$
This is well-defined and unique provided that
Y and X have 2 moment; in particular
ZI = E[X X7] needs to be invertible
Also, 13 is also equal to
algmin E (4 - X73) ²] B = (R ⁴)
· · · · · · · · · · · · · · · · · · ·

This if I is invertible and I has 2 moments
$\beta^* = \Sigma^{-1} \mathbb{E} [Y \cdot X]$
Pt/ 3" is the minimizer of
$E\left[\left(X^{T}\beta\right)^{2}\right] - 2E\left[E\left[Y_{1}X\right]X^{T}\beta\right]$ were all $\beta \in \mathbb{R}^{d}$
Because of noment assumptions we can take the
derivative out to B inside the expectation and
obtain the first order optimality conditions
$\mathbb{E}\left[\chi \times X^{T}\beta\right] - \chi \mathbb{E}\left[\mathbb{E}\left[\mathcal{U}X\right] \times \right] = 0$
Solution is $\mathbb{E}[XX^{T}]^{-1} \mathbb{E}[Y.X]$
By convexity This is unique 1
· · · · · · · · · · · · · · · · · · ·
Remark. What is 13"? It it is the vector of coefficients
of the L2 projection of Y onto the linear spoy
of X (the vettor space of all lineor functions
$\circ_{\rho} \rho \gtrsim 0$
B is rectar measuring linear association
between 2 awal X

Prediction In prediction (the main objective of ML models), we wont to predict a new response, Eag ynew Our gool is the to minimize using Xnew The prediction envor, i.e. In solve the problem $\overline{\mathbb{H}}\left[\left(\underline{Y}^{\text{MEW}}-\left(\underline{X}^{\text{MEW}}\right)^{7}/3\right)^{2}\right]$, Min. BGR prediction MSE of course the solution is 13th. Suppose we insted use a different vector /3 GRd How longe is the error test we make by using the wrong B? $\mathbb{E}\left[\left(Y - X^{T}/3\right)^{2}\right] = \mathbb{E}\left[\left(Y - X^{T}/3^{*} + X^{T}/3^{*} - X^{T}/3\right)^{2}\right]$ $\mathbb{E}\left[\left(Y - X^{T} \beta^{X}\right)^{2}\right] + \mathbb{E}\left[\left(X^{T} \left(\beta^{T} - \beta\right)\right)^{2}\right]$ $+ 2 = \left[\left(\frac{1}{2} - \frac{1}{2} \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{3} \right) \right]$ = 0 by orthogonality of 2 projection $\mathbb{E}\left[\left(\underline{Y}-\underline{X}^{T}/\underline{S}^{\star}\right)^{2}\right]^{1}+\left(\underline{S}^{\star}-\underline{B}\right)^{T}\underline{Z}^{1}\left(\underline{B}^{\star}-\underline{B}\right)^{T}$ systematic error 11 BA - BIZI

If $E[Y|X] = X^T B^*$ then the systematic error is usually written on G^2 , the variance of Y $\left(E_{2}, assuming: Y = X^T B + \Sigma$ where $D \sim (D_1 G^2) = H \times\right)$ and $\|\beta^* - \beta\|_{2^r}^2$ is a measure of how well we are estimating the true regression function DATA Suppose we observe e sample (Y, X,),..., (Y, X) of a poirs of us realizations from the joint distribution of Y and X. i will write $Y = \begin{bmatrix} Y_i \\ \vdots \\ Y_n \end{bmatrix} \in \mathbb{R}^n$ and $\begin{array}{ccc} X & = & \begin{bmatrix} X_1 & \dots & X_n \end{bmatrix}^T & \text{or} & \bigoplus_{n \times d} & = & \begin{bmatrix} \mathcal{U}(X_n) & \dots & \mathcal{U}(X_n) \end{bmatrix}^T \\ & & & & & & \\ \end{array}$ To estimate B we will minimize The empirical MSE or predictive visk $\hat{R}(B) = \frac{1}{n} \frac{S^{2}}{s^{2}} \left(Y_{n} - \Phi(X_{n})^{T} B \right)^{2}$ expectation = Ên [(Y - \$(X)B)] with = Ên [(Y - \$(X)B)] $= \frac{1}{2} \int_{\mathcal{X}} \left[\left(\frac{1}{2} - \frac{1}{2} \right) \right]^2 dt$

		ora	livery less	1- · · · · · ·		
· · ·	The	QLS	stimetor	of 13*	is the	nlnimizer of
		$\hat{R}(R)$	over	all Be	\mathbb{R}^{2}	
	Thos	Assume	that	D is of	full colu	nn rouk
		Then			· · · · · · ·	$[nonk(\Phi) = al \le n)$
				\mathcal{L}	(示であ)	~` ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
			organin			
			/9 CIN			$\mathbb{A}^{\pi Y^{1}}$
		where	ŝ.	᠕ᡩ		τ.
				N N		
					± 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	with row of P
	· · · · ·	votice that		(E_) (\$	κ)⊈(κ))~''	$\mathbb{E}_{n}\left[Y \oplus (X)\right]$
		· · · · · · · · · · · · · · · · · · ·		when	e Kal.	Wit empirical
		5 cs the	plug-in	einneror.	for a B	mediure
		· · · · · ·	· · · · · · ·	structly		
	PA/		$R(\beta)$	(S conve)	c becau	e D wof
			arte D	Hunn ha		full colomy
	· · · L	He Hoss	· · · · · · ·	R(R)	Course	
			of		and and	by the 7
			• • • • • •			0-25 upp 1 DVI
		o the m	inimizer is	found	by Airst	order optimality
		condition		$\nabla R(\beta)$	=0 50	we for A

•			•	•		•			. – 1	The	5	•	. y	ie	ાન	S :	•										•			•	•			•			•
•	•	•	•	•	•			D	. /		م	•	•	•	•		•	Æ	T	- - /	Y			Ŕ	R	$\hat{\boldsymbol{r}}$	\-	• ر		•	•	•	•			•	•
							M	Ķ	. (.0	5.)	.=	÷ .	. –	•	2		Ð	2	.0	-		. 1	Ľ/		. ,).		ر								
						•	•	•																•		•	• 1	•	• /	6	km	ail	•				
								Ś	۰ ۲	ivt	- 10V	'n		is												•		 >.	./		ح	ທີ່ເ	107	Kar	/ \		
														م				י זו יידי		·		ć	~ ^	7								۳`					
													1	3	[]		(. 5	₽'	Φ	,).		Ψ		٩												
						•	•	•									•	Ŀ,	÷		i.			•		. 14							•				
	•	•				•	•	•		•						1n	je.γ	414	ole SC	-	by t	•		•									•				
																•		-6	-37	sub	69	И															
							•	•																•		•											
•	•	•				•	•	•		•									•	•	•		•	•		•		•	•			•	•		•	•	
•	•	•				•	•	•		•										•	•			•		•		•							•	•	
•								•																		•		•								•	
						•	•	•											•			•		•		•		•						•		•	
						•	•	•																•									•				
																										•								•			
							•	•																•		•											
•	•	•				•	•	•		•									•	•	•		•	•		•		•	•			•	•		•	•	
						•																															
						•	•	•		•																											