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· Last time : convergence of gradient descent when ran (2) = on

We saw that convergence to the minimum is slower when

& is rann-deficient /has rank soll .

· classically
,

it is alway assumed that rann)) = d. But what

If Imin (2) = 0 ?

·Suppose that has more columns than rous (d)
What happens ?

I is still obtained as solution to the normal equations

S = Y A

But now there are infinitely many solutions ! That is

If say 5 solves A
,

them 1 + m is also a

solution for every va Kernel (e)

I



· Furthermore
, for any solution I be A

,

we have that

= Y

↳
werplate the data.Joverfittinga

· Among the infinitely many coltums
,

one is somewhat

= canonical, : it is the one with smallest Euclidean norm !

# can be calculated using More - Penrose pseco-inverse :

-> pseudo-inverse

=( Y

M1-norm

whereformuMore-Prepoina
i) AA = A ) Attieps columns of

↓ themselves
,

it is an

identity on <(a))
ii) A

+ AA+ = At

iii) AA + and ATA are symmetric
MXm nxd

Notice that Attaush ATA are idempotent (sea properties

and symmetric . So
,
AAt is the orthogonal

-> au en))

projector onto </A) and AtA is the orthogonal projector

onto ((AT)
,

the row space of A.

&



Useful identities A" = A *Al
+

A = ATAT)
+

↳ Br = &Y

if At is invertible At = AA)"A

Att is invertible A
*

= AT (AAT)
-

·

IfUV v= rank (A) then

A+ VE"uT
nXm

· So for regression :

Sm =Y
= arguin[11K s

. +·S = Y]

=t : gradient decent initialized at 0 (or at any point

in the row-spar of #) converges to Enn

③



* PROPERTIES Of OLS In Fixed DESIGN SETTINGS And Assuming

WELL-SPECIFIE MIDEL

From now on let's assume that the date are of the

form
Ye=

+

S
*

+ si where

E
. ...
in Co . er)

i = 1
, ---

,
n

& .
,

.... In are deterministic

rectors in 19P
#

Assume -- has as i

rann()= d VoN

Note : If we further occune that a
..... did NCo,

then the likelihood of Y
, ..

. .,
Yu is

&"ex

and I is the muE of

OLS

Next , for any BaR"
, the of I is

R(B) = # [I] = Ea[ "(*-3)+ 11]
Y

expectation
ourt Y

= (13)+



= 198 - 11 + 02 = 1199-Sh + R(B)
W

- = R(19)
-estimation error ,

irreducible error

(smallest possible resul
The quantity R(M) - R($* ) So is the easrisk

estimator

5
,

let's look of the expected excess rishof -2

E[R(E)] -
R(e% = ET(-[z (s :

-i))

= add and subtract E[]

= (1 -55))"( - E[i]) +

# TC - #[i7): (5 - ET5])]

-EETi))"(- E[5])]
= O by linearity of

#T - J

= E-E]] + 11 -Tea
- Bias" term
variance term for

(0 if ET5] =19)
↓

bas-variance deyupostion of excess rish

⑮



If we choos to use Is the us estimator
,

then

1) E[5]=
*

e) var()=

because· [i] = (E)"EEE invertible

E is

var [i] = Var["Y] (var[Ay] =

A varTy] at)
-(
="=

Using these facts
,

we can establish that

#TR/El] - R(1)] = di -o of d=on)

Pf/ Because ETI) = S
*

we only need to analyze the

variancetarm :

# 15-19] = E[11" (8+ 1) - 11]

-[11 +" :]

=[11 : ]
⑧



= El )
= T"E]

= E[n Hs]

= ET + (H - i)]
= in tr(H
= (H)

Exercise !

=

Remarks
-

1) This vote is opticaly (in din and (2)

et) an anobour bound holds with high probability

butof requires more advanced tools

men) This borne implies that the risk of S is

#[R(i)] = F
-Yneuer-11]

freshtof samples

= v( ++)
This is called the out-of-sample risk of

expected test error

D



If we insted we compute the in-sample

expected risk :

ETR(i)] = En[]
↓

↓ expectationort to

expectedtraining somewlta usess the compute

error

= d -(1 - 4)

&


