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* GAUSS MARKOV THEREM

rank()= d = n

-

We are in the setting where T 16 2

deterministic design matrix and the linear model is

wall-specified :

Y=B
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Any estimator
of the formAY , whereA ishe

deterministic matrix (possibly depending on is said to

benear and is unbiased if

ETAY] =3
,
S
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· We know that B=)" Y is an unbiased linear

estimator of I?

· Gauss-Markov Theorem: I is the best linear

unbiased estimator (BLUE) of M
D



This means that
, among all unbuised linear estimators of

of the form,

var[] 2 var [AY]

where we song that a xd matrix B is So

& non-negative in the positive-semidefinite or Cowener

partial order) If B is psol. Then we

can write A38 to mean that A-150.

dad dad

B This is a partial order
, meaning that it is

possible that A and I eve not comparable

meaning neither AB nor BEA

holds . In particular A &B does

not mean A XB
,

Pf/ Let Al be an unbraised estimator of 19
·

Then

S
P

= E[AY) = FERP + AET] = ABS
*
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↳ this is true for any 18 so A = Fold

Now Var(AY) = -AA" (because var/4] = var[s] = eIn)
Next let D = A-*"I. So

va [AY] = or(D +(" )(D++)
"

Because A =
F

,
(D+) @ = I

or

D + I = 1
-> D = 0

②



As a result

var [AY] = orDD" + 5(6)
- cross terms that are zero

= wDD" + var[]]
un

↓
↳ O

var[Ay]-var[S] 30 or
VarTAY] > varIE]

-

In facta for any
CER" is the BLUE of

+ 35

③



· Learning Theory from First
&

* RIDGE REGRESSION by Francis Back

Principles

Chapter 3
· Suppose thata is large compared to n , meaningthat

& is close to 1
.

There are of course computational issues

because # is not well conditioned and statistical

issues because var[7 = or() -1

↳) poorly conditioned

· One approach is toregularize ,
to solve a penalized

least-squares problem that encourages "goodn properties of

the solutions. Ridge regression is an important

example (and so is Lasso).
#te : here we are interested in minimizing the production

risk or the excess rick
.

The ridge least squares exinator is

=argwinX
regularization
parameter

If1=0 this gives us &
,

the als

Ex is uniquely defined no matter and is

equal to

x = C+) =E
-

always invertible

⑪



Pf/ Let Fa(l) = * 114-11 + 11/12 is

strictly convex so 1 is found by checking first

order optimality conditions :

o = T(x) = z(3 -y) +14

terms trl= HW

2) Alternative expression :

Ex= In
nXy

better numericallyif rank()=d

3) Let = V &V .

The

ith column of U

rank()>

&= u.
(4

,13
& Ith singul

compare to value

rann()

# In = & he <Y
,
el

statistical properties of 1 (recall we want to
minimize the run

!)

=ste Theexcessrismoe +

&



(( +>"(

= B + V

B is a bis term
increasing in $ and V

is the varance

form
, decreasing ina

#he if I is invertible ,
when do

we reare the rush

ofS (which is 2)

Pf/ Recall the decomposition of the excels rus of any
ettimator

:

#TR(1)] -
R

= DETE] -151-1-ETTli]
Now replace 5 by Ex

.

For the basi

#[is] = (+)+ + E +JI)]
D

= ( + 1 =)+S
*

= 35 -1 +1) &

Exercise

↳ IIE()-s9 =
12 3

**

(I =X1)"E +x1)"*

= 12 S
*

"[@ + (11) &

because C +I)" and I cornute. HW

⑳



As for the varance term :

/2-e[i]l) = e(/( ++1)]

= i ET ( +1) " ( +1)"Ei)

= in T +( ( + ) " &(5 +>F(i)]

=(( +1)
" [ +3)")

= In are-

of

deprees of freedom
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