

So we over interested in Lower-bounding π sup $\mathbb{E}_{p}[R(A(\frac{\Delta A^{k}(P)}{y})]-6^{2}]$ where $P = \int$ probability distributions for $y = \frac{1}{\sqrt{3}}\int_{0}^{x} f(z) dz$ $z \sim (0, e^{2}I_{\infty})$ This expression is in torn, hower bounded by πr and πr πr The Lost expression can be written int aup $E\left[R(A(\Phi\beta^*+\varepsilon))\right] - 6^2$
A $\beta^* \in \mathbb{R}^d$ $\in N(o, \varepsilon \mathbb{I}_n)$ and raundom the over sping to tone a Boyeram, approch and lover bound $A = \mathbb{E}_{\mathcal{A}^k - \pi} \mathbb{E}_{\varepsilon \sim N(\alpha_0 \pi_n)} \left[R(A(\mathcal{B} \beta^k + \varepsilon)) \right] - \varepsilon^2$ \odot

We can pick any prior TT. We pick a prior to that is anotytheally convenient. Chose as prior in the destribution $\beta^* \sim N(0, \frac{e^{xT_n}}{2^n})$ where $\lambda > 0$ Then $(3^* , \oplus 3^* + \epsilon)$ $\in \mathbb{R}^d \times \mathbb{R}^n$ is jointly Coussion with noon O and variance $\frac{e^{2}}{n \lambda}$ $\frac{1}{\Phi}$ $\frac{1}{\Phi$ Next, recall that $R(A(\Phi\beta^*+1)) - e^{2} = \|A(\Phi\beta^*+1) - \beta^* \|_{\hat{Z}}$ where $\hat{\vec{z}} = \frac{1}{n}\vec{w}\vec{w}$ the expression becomes $E_{(3^{k}, Y)}[1 A(Y) - \hat{3} \mid_{2}^{2}] =$ $D/3^k + 2$ =
 $\int_{\mathbb{R}^{n}}|\mathcal{H}(y)-\beta^{*}|_{2}^{2} d\beta^{*}(y) d\beta(y)$
 β^{n} posterior of
1⁴ given y (3)

A standard calculation gives that the posterior is ↓ A stondord colculation gives that the processe $\beta^*|Y \sim N_d \left(\beta_3, \frac{62}{\pi} \left(\frac{1}{\sqrt{2}}\right)\right)$
where $\beta_3 = \left(\frac{3}{\pi} + \frac{1}{2} \cdot \frac{1}{2}\right)^{-1} \frac{5}{\pi} \cdot \frac{1}{2}$ $+$ $\lambda_{\mathcal{I}_{d}}$)⁻⁽) where $\hat{\beta}$ a = $(\hat{\mathcal{Z}} + \lambda T_d)$ $\frac{\mathbb{E}^{T}}{n}$ = Next, $\int |A(1)-A^{*}|^{2}sin^{2} dP(A^{*}(1)) = E_{A^{*}(1)}|A(1)-A^{*}|^{2}$ \mathcal{R}^{\bullet} \geq inf $E[\text{UAC}(4)-15^{\frac{1}{2}}]/3$ A A^* = $\mathbb{E}_{\beta^{*}M}$ $\left[\|\hat{\beta}_{\lambda} - \hat{\beta}^*\|_{\hat{\mathcal{F}}}\right]$ because $E[\text{UACY}]-\beta^{*}\text{V}^2+\text{I}$ is minimized when 7^{4} /4 $A(Y) = \hat{A}_{A}$, the posterior mean Exercise Putting everything together, we have found the following lower bound for the minimax rask : $E_{(3^*,4)}$ $(1/3 \sqrt{3}\|_{2}^{2}$ = $E_{zN(0,6.74)}$ $E_{zN(0,6.74)}$ $(\frac{1}{2})$ $(\frac{1}{2})$ $(\frac{1}{2})$ $(\frac{1}{2})$ $(\frac{1}{2})$ $(\frac{1}{2})$

We have that * = ve that
 $(\Phi^{\tau}\Phi + n\lambda Id)^{-1}\Phi^{\tau}\epsilon - n\lambda (\Phi^{\tau}\Phi + n\lambda Id)^{-1}$ $n\lambda I_{d}$) β^* Exercise Because β^* 11 ϵ the expression is E_{z,NCo_6} $\Big|\Big| \Big| \Big(2 +$ $\begin{array}{rcl}\n\frac{1}{2} & - & n \lambda \left(\frac{\pi}{2} + n \lambda \mathbb{I} + \right)^{2} / 3^{k} \\
\frac{1}{2} & - & \frac{1}{2} \lambda \left(\frac{\pi}{2} + n \lambda \mathbb{I} + \right)^{2} / 3^{k} \\
\frac{1}{2} & \frac{1}{2} \lambda \left(\frac{\pi}{2} + n \lambda \mathbb{I} + \frac{\pi}{2} \right) \left(\frac{\pi}{2} + n \lambda \mathbb{I} + \frac{\pi}{2} \right) \\
\frac{1}{2} & \frac{1}{2} \lambda \left(\frac{\pi}{2} + n \lambda$ $=$ T_i + T_i We hove that
 $T_1 = \frac{c^2}{n}$ fr $(\frac{C_1}{C_2} + 1)$ $(\frac{C_2}{C_1} + 1)$ $T_2 = \lambda$ $\frac{1}{5}$ fr (5^4) $(\hat{z} + 1)$ ⁻¹ \hat{z} $(\hat{z} + 1)$ ⁻¹ \hat{z} ⁺ = $\frac{1}{\sqrt{2}}\mathbb{E}\left[\sqrt{3}^{\frac{1}{2}}\left(\frac{1}{2}+1\frac{1}{4}\right)^{2}\right]^{2}\left(\frac{1}{2}+1\frac{1}{4}\right)^{2}\right]^{2}$ ↳ π
 π + T₂
 $\frac{e^{2}}{h}$ + T $\left(\frac{2}{2} + \frac{1}{4} - \frac{1}{2} - \frac{1}{2}\right)$
 $= \frac{1}{2} \frac{e^{2}}{h}$ + π $\left(\frac{2}{2} + \frac{1}{4} - \frac{1}{2}\right)^{2}$ $\frac{2}{2} (\frac{1}{2} + \frac{1}{2})$
 $= \frac{1}{2} \frac{e^{2}}{h}$ + π $\left(\frac{2}{2} + \frac{1}{4} - \frac{1}{2}\right)^{2}$ $T_1 + T_2 = \frac{6^2}{n}$ fr $((2 + \lambda)^{-1}2^2)$ $\lambda_{>0}$ $\frac{\lambda^{2} e^{2}}{\lambda \lambda}$ $\frac{\lambda}{\lambda}$ $\frac{\$ ↳ lower bound on the minrax rask. The above bound holds for any $d>s$. Of course $\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ \odot

So the fund lower bound: $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ $\frac{6^{2}}{n}$ $\frac{1}{4\sqrt{9}}$ $\left(\frac{6}{2^{4}} + \lambda T_{d}\right)^{-1} \frac{1}{2^{4}}$ Recoll 2
s invertible
by assumption $rac{6^{2}}{n}$ tr $(T_{d}) = \sqrt{6^{2} d}$ expected excess visu of $\hat{\beta}$ (old) 3 (OLS) is the minimax estimator BE STATISTICAL INFERENCE FOR 15 As usual the model is $Y = \Phi \beta^* + \epsilon$ \sim $\left(q_c 6^2 \text{T}_n \right)$ full column rouse stochatical informer for 13th $\frac{1}{2}$ $\frac{1}{2}$ 15 B COLB) consistent, meaning BBA? y
when β is computed
ving data $y = \frac{\pi}{2} \int_{0}^{x} f(x) dx$

Yes I To see this $\hat{\beta} = (\overline{\mathbb{D}}\mathbb{D})^{\prime} \mathbb{D}^{\dagger} \hat{y} = \hat{\beta}^* + \hat{\beta}^{\prime} \mathbb{D}^{\dagger}$ $\frac{Clon}{\sim}$: if $2^7 = 2^7 \frac{Cl}{\sim}$ then $\sum_{1}^{n} \frac{\partial^{n}z}{\partial x^{n}} \geq 0$ or $\sum_{1}^{n} \frac{\partial^{n}z}{\partial x^{n}} = op(1)$ $\frac{p}{n}$ B_y will $\frac{p}{n}$ $\frac{p}{n}$ $\frac{p}{n}$ $\frac{p}{n}$ because $\frac{\Phi^T \xi}{h} = \frac{\sum_{\lambda=1}^{n} \Phi_{\lambda} \epsilon_{\lambda}}{n}$ where Φ_{λ} is transport of Φ isi \sim (0, 6² Φ , Φ^{τ}) and $Var \left[\Phi^{\frac{r_{2}}{n}}\right] = \Phi^2 \Phi^{\frac{r_{2}}{n}}$ 50 by chalogsher $\Phi_s^s \gg 0$ δ $\hat{\mathcal{Z}}$ \rightarrow $\hat{\mathcal{Z}}$ \rightarrow $\hat{\mathcal{Z}}$ \rightarrow $\hat{\mathcal{Z}}$ \rightarrow $\hat{\mathcal{Z}}$ \rightarrow $\hat{\mathcal{Z}}$ \rightarrow $\hat{\mathcal{Z}}$ N ex C $2^{16}925$ $2^{16}8070$ 3 is orymptotrally normal. Also $\sqrt{n} (\hat{\beta} - \hat{\beta}^*) \rightarrow \sqrt{n} (\hat{\rho}, \hat{\rho}^2)^T$ (7)

