• •	• •	
• •	• •	
• •	• •	
• •	• •	
• •	• •	SDS 387
		Linear Models
		• • • • • • • • • • • • • • • • • • •
• •		
• •	• •	Lecture 22 - Tue, Nov 14, 2024 (Constant) (Constant) (Constant)
• •	• •	
• •	• •	Instructor: Prof. Ale Rinaldo
• •		
		· HW 4 is now due Thu, Nov 21, by midnight and project report
• •		due on Monday Nov 18, by midnight.
• •		Last time: we finally finished discussing ous properties under
• •	• •	
• •	• •	fixed-design, well-specified model.
• •	• •	
		A live of the second
		· We are now dropping both assumptions. The lack of linearity
		and roundommers of the design motivix create extre-complications
		in porticular an increase in variability.
• •		
0 0	• •	
• •	• •	lates assume Proventient R Lat 44 1-1
• •		· Let's assume for now that $\underline{\mathbb{P}}$ is rawhom but the model nodel
		is well - specifier. This nears that our observations are
		$(Y_{i}, \Phi_{i}), \dots, (Y_{n}, \Phi_{n})$ und $P_{Y_{i}}\Phi_{i}$ in $R \times R^{2}$
		$\sim \sim \sim \gamma_{, \mathcal{Q}}$
		DT at interest Elization Commenter
• •	• •	$Y_n = \Phi^T \beta^+ + \varepsilon_n \text{where} \varepsilon_{1, -2} \varepsilon_n [\Phi_1, -\Phi_n]$
• •	• •	$= 1^{int} \left(0_i 6^2 \right)$
• •	• •	A CALL CALL CALL CALL CALL CALL CALL CA
• •	• •	Now the definition of the risk has to be modified.
0 0	• •	
		(1)

$\beta \in \mathbb{R}^{d} \longrightarrow \mathbb{R}(\beta) = \mathbb{E}\left[\left(\underline{Y} - \overline{\Phi}^{T}\beta\right)^{2}\right]$
$\beta \in \mathbb{R}^{d} \longrightarrow \mathbb{R}(\beta) = \mathbb{E} \left[\left(\underline{Y} - \underline{\Phi}^{T} \beta \right)^{2} \right]$ $y_{,\underline{\Phi}}$ $y_{,\underline{\Phi}}$ $y_{,\underline{\Phi}}$ $y_{,\underline{\Phi}}$ $y_{,\underline{\Phi}}$ $y_{,\underline{\Phi}}$ $y_{,\underline{\Phi}}$ $y_{,\underline{\Phi}}$ $y_{,\underline{\Phi}}$ $y_{,\underline{\Phi}}$ $y_{,\underline{\Phi}}$ $y_{,\underline{\Phi}}$ $y_{,\underline{\Phi}}$ $y_{,\underline{\Phi}}$ $y_{,\underline{\Phi}}$
Prop 3.9 in Bach's book > (B-B*) = ZI(B-B*)
$R(B) = \ B - B^*\ _{2}^2 + 6^2$
where $6^2 = R(B^{*}) = \inf R(B)$ and $\Xi = \mathbb{E}\left[\mathbb{D}\mathbb{D}^{T}\right]$.
where $G^2 = R(B^*) = \inf R(B)$ and $\Xi = \mathbb{E}\left[\mathbb{D}\mathbb{D}^T\right]$. $R(B) = \mathbb{E}\left[(Y - \mathbb{D}^TB)^2\right] = \mathbb{E}\left[(Y - \mathbb{D}^TB^* + \mathbb{D}^T(B^* - B))^2\right]$
$= \mathbb{E}\left[\left(\underline{Y} - \underline{\Phi}^{T}\underline{\beta}^{*}\right)^{2}\right] + \mathbb{E}\left[\left(\underline{\Phi}^{T}\left(\underline{\beta}^{*} - \underline{\beta}\right)\right)^{2}\right]$
$+2 \mathbb{E}\left[\left(\underline{Y} - \overline{\Phi} \overline{f} , \underline{s}^{*}\right)\left(\underline{\Phi} \overline{f} (, \underline{s}^{*} - f s)\right)\right]$
$= 0$ $Exercise (E[4-\overline{\Phi}], [\overline{\Phi}] = 0)$
$= 6^{2} + (\beta^{*} - \beta)^{T} \mathbb{E} \mathbb{P} \mathbb{P}^{T} (\beta^{*} - \beta)$
$\ \beta^* - \beta\ _{z^*}^2 = B$
Because 6 ² is intrinsic noise quality, we will facus on
Because 6 ² is instrinsic noise quantity, we will focus on the excess risk:
$R(\beta) - 6^2 = \ \beta^* - \beta\ _{2^2}^2$
• So, now assume we observe $(\underline{Y}, \underline{\Phi},), \dots, (\underline{Y}_n, \underline{\Phi}_n)$

ound compute the ous $\beta = \frac{1}{2!} \frac{1}{2!} \frac{y_{1}}{y_{2}} \frac{\overline{y}_{1}}{\overline{y}_{2}}$
where $\hat{Z} = \frac{1}{n} \hat{Z} = \frac{1}{n} \hat{D} \hat{D} \hat{D} \hat{D} \hat{D} \hat{D} \hat{D} D$
be invertible with probability 1. A sufficient
condition for this is \$7 is of full rank
and $n \ge d$ so the distribution of the Dis does not concentrate on any effine linear subspace
10p- s.D The expected excels rul
of $\sqrt{3}$ (ols estimator) is: $\frac{6^{2}}{n} E\left[tr\left(\underline{z}^{2}\hat{\underline{z}}^{-1}\right)\right]$
$PP/$ <u>Natotion</u> let \hat{D} be used notices with nous
given by D.T.,, Du. This is the roudon design netters. So in porticular
$\hat{\mathcal{Z}} = \hat{\lambda} \hat{\Phi}^{T} \hat{\Phi}$
Also let Your E be n-dimensional vectors. because
of responses and error, so $\beta = \widehat{Z}^{-1} \widehat{\Phi}^{-1} Y = \widehat{Z}^{-1} \widehat{\Phi}^{-1} (\widehat{\Phi}^{-1} \beta^{-1} + \varepsilon)$
$= \beta^* + 2^{\frac{n}{2}} \hat{\Phi}^{\frac{1}{2}}$
· · · · · · · · · · · · · · · · · · ·
3

$S = E\left[\ / 5^* - / \hat{\beta} \ _{\mathcal{Z}}^2 \right] = E\left[\ \hat{\mathcal{Z}}^{-1} \hat{\Phi}_{\mathcal{Z}}^{-1} \ _{\mathcal{Z}}^2 \right]$
$= \mathbb{E}\left[\frac{1}{2} \left(\frac{2}{2} \left(\frac{\hat{z}}{2} - \frac{\hat{b}}{2} \frac{\tau}{2} \right) \left(\frac{\hat{z}}{2} - \frac{\hat{b}}{2} \frac{\tau}{2} \right) \right] \right]$
$= \underbrace{\mathbb{E}}_{\varepsilon,\widehat{\Phi}} \left[f_{v} \left(\underbrace{\mathcal{Z}}_{1}^{\prime} \\ \underbrace{\mathcal{Z}}_{1}^{\prime} \right) \underbrace{\mathbb{E}}_{v} \underbrace{\mathbb{E}}_$
$= \mathbb{E}_{\widehat{\Phi}} \left[\mathbb{E}_{\varepsilon_1 \widehat{\Phi}} \right] \right] \right] \right] $
Standard Trick when $\vec{\mathcal{D}}$ is random $\vec{\mathcal{O}}\vec{k}$ to be this
$= \mathbb{E}_{\widehat{\Phi}} \left[\frac{1}{n} \left(\underbrace{\mathcal{I}}_{n} \stackrel{\circ}{\underset{n}{\overset{\sim}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}}{\overset{\circ}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}}{\overset{\sim}{\sim$
$= \frac{\partial^2}{\hbar} \mathbb{E}_{\widehat{\Phi}} \left[\operatorname{tr} \left(\mathbb{Z}^2 \stackrel{\circ}{\cong} \stackrel{\circ}{\cong} \stackrel{\circ}{\mathbb{Z}}_1^{**} \right) \right]$
$= \underbrace{\delta^{2}}_{n} \operatorname{F}\left[\operatorname{tr}\left(\underline{z}, \hat{\underline{z}}^{\dagger}, \cdot\right)\right] \xrightarrow{\mathbb{Z}^{2}}_{\mathbb{R}}$
contentral issue : É may not be well conditioned? Lo we will talk about this next week
. What if the model is not well specified? That is
what if $\mathbb{E}[Y \mathbb{P}] \neq \mathbb{P}^T / S^*$ (the regression $\mathbb{E}[Y \mathbb{P}] \neq \mathbb{P}^T / S^*$ (the regression function is not even $\mathbb{E}[Y \mathbb{P}] \neq \mathbb{P}^T / S^*$ (the regression function is not hnear).
Then we can define as our parameter
$\beta^* = \operatorname{argmin}_{Y_{\mathcal{B}}} \left[\left(Y - \mathfrak{P}^{T} \mathcal{B} \right)^2 \right]$ $\beta \in \mathcal{R}^d \qquad \qquad$

= argnun $\mathbb{E}_{\oplus} \left[\left(\mathbb{E} \left[Y_{1} \oplus \right] - \oplus B \right)^{2} \right]$ $R \in \mathbb{R}$ $\frac{1}{best_{1}} lineor = poroscinations$ $\frac{1}{best_{2}} ns the regression$ $\frac{1}{best_{2}} ns the regression$ $\frac{1}{best_{2}} the regression$ $\frac{1}{best_{2}} the regression$
$= 2^{1-1} \mathbb{E} \left[\Phi Y \right]$
this unique as long as $57 = E \left[\overline{\Phi} \overline{\Phi}^{T} \right]$ is invertible and disc
· B is sometimes called the projection parameter · More than one joint distribution of (Y, Φ) can have the
some projection porameter l
B* is the vector of coefficients of the projection of Y onto the lineor spon of \$ (ie the set of rivi's of the form {\$
measure op lineour association between Y and the vector D.
• Then, one can show that, in this sufvation the risk $\beta \in \mathbb{R}^d \mapsto \mathbb{E}_{Y = \Phi} \left[(Y - \Phi^T / 3)^2 \right] =$
$\mathbb{E}\left[\left(Y - \mathbb{E}\left[Y_{1}\mathbb{D}\right]^{2}\right] + \mathbb{E}\left[\left(\mathbb{E}\left[Y_{1}\mathbb{D}\right] - \mathbb{D}^{T}/3^{T}\right)^{2}\right] + \frac{11}{3^{T}} - \frac{31}{2!}\right]$
$\frac{6^{2}}{\text{variance}} = 0 \text{ when}$ $\frac{6^{2}}{\text{variance}} = 0 \text{ when}$ $\frac{1}{4} = \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} \right] \right]^{2} \right] \text{ worder } \left[\frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} \right] \right]^{2} \right]$