· · · · · · · · · · · · · · · · · · ·
SDS 387 Linear Models
Fall 2024
Lecture 23 - Tue, Nov 19, 2024
Instructor: Prof. Ale Rinaldo
• Last time: linear regression with random design and well-specified $(\overline{\Phi}_{i}, \gamma_{i}), \dots, (\overline{\Phi}_{n}, \gamma_{n}) \stackrel{\text{ind}}{\rightarrow} P_{\overline{\Phi}_{i}}\gamma$
$Y_{i} = \Phi^{T}/\beta^{*} + \varepsilon_{n}$ $Z_{i}^{T} = E[\Phi_{n}\Phi_{n}^{T}]$ $\xrightarrow{\text{invertible}} \qquad $
We some that the expected excess risk of $\hat{\beta}$ (ocs) is $6^2 E \left[tr \left(\underline{z}_i^2 \underline{\hat{z}}_i^{-i} \right) \right]$ $\underline{\bar{\varphi}}_{i,\dots,\bar{\bar{\varphi}}_0}$
$avwl \qquad \stackrel{?}{\not{\sum}} = \frac{1}{n} \stackrel{?}{\not{\sum}} \Phi = \stackrel{?}{\not{\sum}} \stackrel{?}{ } \stackrel{?}{\not{\sum}} \stackrel{?}{ } \stackrel{?}{ \stackrel{?}{ } \stackrel{?}{ } $
which is assumed to be invertible with prob. 1.
· puestion: is this optimal?

Theorem 1 of Mourtada (405 2022, 20(4), 2157-2178)
i) Assume that either $d \ge n$ or the distribution of the \overline{Q}_n 's is degenerate (supported on an officience subspace of R^d) Then the minimax risk is <u>infinity</u> (
in) If $n \ge d$ and the distribution of the Diss is not degenerate $(\widehat{z} \text{ is invertible up 1})$ then $\int_{\mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \sum_{i$
Above, the expectation is with to the distribution of $\phi_{i_1,,i_n}$ and $\varepsilon_{i_1,,i_n}$
PF Very similar to the proof of minimak optimality of DLS in fixed design setting.
$\inf_{\mathcal{B}} \sup_{\mathcal{B}} \mathbb{E}_{\alpha_1, \dots, \alpha_n} \left[\mathbb{R}(\mathcal{B}) \right] \cong \inf_{\mathcal{B}} \mathcal{B} \sup_{\mathcal{B}} \mathcal{B}^* \mathbb{E}_{\mathcal{B}_1, \dots, \alpha_n} \left[\mathbb{R}(\mathcal{B}) \right]$ $\approx \inf_{\mathcal{B}} \mathcal{B}^* = \inf_{\alpha_1, \dots, \alpha_n} \inf_{\mathcal{B}} \mathbb{E}_{\mathcal{B}} \inf_{\alpha_1, \dots, \alpha_n} \inf_{\mathcal{B}} \mathbb{E}_{\mathcal{B}} \inf_{\alpha_1, \dots, \alpha_n} \inf_{\mathcal{B}} \mathbb{E}_{\mathcal{B}} \inf_{\alpha_1, \dots, \alpha_n} \inf_{\alpha_n} \mathbb{E}_{\mathcal{B}} \inf_{\alpha_n, \dots, \alpha_n} \lim_{\alpha_n, \dots, \alpha_n} \mathbb{E}_{\mathcal{B}} \inf_{\alpha_n, \dots, \alpha_n} \lim_{\alpha_n, \dots, \alpha_n} \mathbb{E}_{\mathcal{B}} \inf_{\alpha_n, \dots,$
We replace sep with an average, assuming a prior β^{*} distribution for $\beta^{*} \sim N_{d}(0, \frac{6^{2}}{n \lambda})$ some $\lambda > 0$ to be clossey (2) Later (2)

Using t	he some contactorbons	s in the fixe	l derign setting,
	minimax nix is le		
	$\frac{2}{\Phi_{1,-c}\Phi_{n}}\int tr\left(\frac{2}{\Delta_{1,-c}\Phi_{n}}\right)$		
Case i)	ton is it	invertible worth	ords 1 (dependencie cose)
They		lorgest eigenvolve	D's is reported on a affine subspace
tr (2?"2	$\left(\begin{array}{c} \hat{z} + \lambda I_{d} \right)^{-1} \geq \frac{1}{2}$	$) \doteq d_{mox} ($	
	A	- down (51	$\left(\begin{array}{c} 1 \\ 1 \\ z^{n} \\ z^{n} \\ z^{n} \end{array} \right) \left(\begin{array}{c} 2 \\ z^{n} \\ z^{n} \end{array} \right)$
Since Z	Žiš not invertible ut St (Žerd Id	ар 1, 2 ли е	shere possibly Sd-, (roundarn)
8,6	ut I' (I + I'd)		
		$\sum_{i=1}^{n-1} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$	the null space of
· · · · · · · · · · · · ·	· · · · · · · · · · · · ·		drox $(\Xi^{(-)})$
· · · · · · · · · · · · · · · · · · ·	Joner (St)	- drnu	n (Z)
Se		· · · · · · · · ·	· · · · · · · · · · · · ·
So th	e mint work wish is	lover bounded	65

· · · ·	$\frac{G^2}{n} \frac{\dim (\Sigma_{\lambda})}{\lambda} \qquad \qquad$
· · · ·	Letting 2->> the minimax lawer bound -> co
· · · ·	in) 4 2 is invertible with prob 1 then
· · · ·	tr $\left(\left(\frac{2}{2} + \lambda T_{d} \right)^{\prime} \frac{2}{2} \right)$ is \forall in d and conviewges to $Tr \left(\frac{2}{2} \frac{2}{2} \right)$ as $d \rightarrow 0$.
· · ·	By monstane convergence theorem the minimum $\frac{1}{2}$ lower bound is $\frac{6^2}{2} \mathbb{E} \left[\text{tr} \left(\hat{\Xi}^{-1} \Xi^{-1} \right) \right]$
· · · ·	Mourtada's <u>Corollory 2</u> ; if n=d and the distribution
· · · ·	of the Qu's is not degenerated you can further lower bound this by
· · · ·	$G^{2} = \frac{d}{n-d-1}$
· · ·	1p the covariates $\Phi_{1, -r}$, Φ_{a} , $N(0, Id)$ this value is the exact minimax risk.
· · · ·	AN EXACT ANALYSIS OF THE RISH UNDER GAUSSUM
· · · ·	Breman & Freedman (1983) JASA 78 (731)

· · · · · · · ·	Assume all the conditions above and further suppose that $\Phi_1, \dots, \Phi_n \xrightarrow{\text{urb}} N(0, \text{Id})$. Then the visu of 215
· · · · · · · ·	$\frac{6^{2}}{n} \mathbb{E}\left[\frac{1}{n} \left(\sum_{i=1}^{n} \frac{1}{2^{i}} \right) \right] = 6^{2} \mathbb{E}\left[\left(\sum_{i=1}^{n} \frac{1}{2^{i}} \mathbb{P}_{n} \mathbb{P}_{n}^{\dagger} \right)^{-1} \right]$
· · · · · · · ·	La Wishort distribution with poromoter Id and in degrees of freedo
· · · · · · ·	its inverse is called the inverse Wishort
· · · · · · ·	$= \begin{cases} \frac{6^2 \operatorname{tr} (Ia)}{n-q-q} = 6^2 \frac{d}{n-q-q} & n>d+q \end{cases}$
· · · · · · · ·	$\int os \qquad if \qquad n \neq d \text{ or } \qquad dt_i$
· · · · · · ·	$A_{1} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)$
· · · · · · · · · · · · · · · · · · ·	At interpolation $(n=n)$ the risk explodes. or had
· · · · · · ·	Now, unler the some settings, something interesting happens
	when a >n. See Belkin, How and XU (2020)
	SIAM Journal of Mothematics
	You would expect bed, risk behavior.
	Surprisingly the risk is stable and in fact it can be smaller
	then when $d \leq n$. (5)

When d>n we will fit the min-norm estimator:
$\hat{\beta}_{MN} = \Phi^{+} Y = (\Phi^{T} \Phi)^{+} \Phi^{T} Y = \Phi^{T} (\Phi^{T} \Phi^{+})^{-1} Y$ $\hat{\beta}_{MN} = \Phi^{+} Y = (\Phi^{T} \Phi)^{+} \Phi^{T} Y = \Phi^{T} (\Phi^{T} \Phi^{+})^{-1} Y$ $\hat{\beta}_{MN} = \Phi^{T} (\Phi^{+} \Phi^{+})^{-1} Y$
Let's compose the expected excess risk \$\$ [[Bmu-B I]
The first thing to notice there as a bias term:
$\beta^{*} - \beta_{MN} = \beta^{*} - \Phi^{T} (\Phi \Phi^{T})^{-1} \Phi (\beta^{*} - D^{2} (\Phi \Phi^{T})^{-1} \varepsilon$
$= \left(\mathbb{I}_{a} - \Phi^{T} \left(\Phi \Phi^{T} \right)^{-1} \Phi \right) / \beta^{*} - \Phi^{T} \left(\Phi \Phi^{T} \right)^{-1} \varepsilon$
I-77 orthogonal projectory onto the null space of
$\mathbb{E}\left[\left \beta^{*}-\hat{\beta}_{mn}\right \right ^{2}\right] = \mathbb{E}\left[\left \left \left(\mathbb{I}-\pi\right)\beta^{*}\right \right ^{2}\right] + \frac{1}{2}\left[\left \left(\mathbb{I}-\pi\right)\beta^{*}\right \right ^{2}\right] + \frac{1}{2}\left[\left(\mathbb{I}-\pi\right)\beta^{*}\right] + \frac{1}{2}\left[\left(I$
$E_{\underline{\Phi}}\left[f_{V}\left(\left(\underline{\Phi} \underline{\Phi}^{T} \right)^{-1} \underline{\Phi} \underline{\Phi}^{T} \left(\underline{\Phi} \underline{\Phi}^{T} \right)^{-1} \underbrace{E_{I} \left[\underline{\Sigma} \underline{\Sigma}^{T} \right] }_{\underline{G}^{2} \underline{\Gamma} \underline{n}} \right) \right]$
$= \mathbb{E}_{\Phi} \left[\mathbb{I}(\mathbb{I} - \mathbb{T})/3^{*} \mathbb{I}^{2} \right] + \mathbb{E}_{\Phi} \left[(\Phi \Phi^{*})^{-1} \right]$
$= T_1 + T_2$

Next, $T_{I} = \frac{11}{3} \frac{1}{2} - E \left[\frac{1}{3} \frac{1}{3} \frac{1}{2} \right]$
To compute $\mathbb{E}\left[\left\ \left. \Pi \right/ n^{*} \right\ ^{2}\right]$ we will use the fact that if $\mathbb{Z} \sim N\left(O, I\right)$ then $U\mathbb{Z} \sim N\left(O, I\right)$ where U disd
is an arthogonal matrix. Let $U_i, U_2,, U_d$ be find arthogonal matrices s.t. $U_i B^{*} = 11/311 e_1$ V_i ath standards So, $\forall i = i_1 - i_d$ bosis vector
$\ \Pi\beta^{*}\ ^{2} = \beta^{*} \overline{\Phi}^{*} (\overline{\Phi} \overline{\Phi}^{*})^{*} \overline{\Phi} \beta^{*} \stackrel{d}{=} \beta^{*} U_{x}^{*} \overline{\Phi}^{*} (\overline{\Phi} U_{x} U_{x}^{*} \overline{\Phi}^{*})^{*} \overline{\Phi} U_{x} \beta^{*}$
$= \frac{\left\ { } \right\ ^{2}}{2} e_{n} = \Phi^{T} \left(\underline{\Phi} \Phi^{T} \right)^{-1} \underline{\Phi} e_{n}$
$ = \ / \beta^{*} \ ^{2} \text{tr} \left(\mathbb{P}^{T} (\mathbb{P}^{T})^{T} \mathbb{P}^{T} \mathbb{P}^{T} (\mathbb{P}^{T})^{T} \mathbb{P}^{T} \mathbb{P}^{T} \mathbb{P}^{T} (\mathbb{P}^{T})^{T} \mathbb{P}^{T} \mathbb{P}^{\mathbb$
$\mathbb{E}\left[\left \left \mathcal{T}/\mathcal{S}^{*}\right \right ^{2}\right] = \frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left[\left \left \mathcal{S}^{*}\right \right ^{2} + \mathcal{E}\left(\left \Phi\right ^{2}\right)^{i} \oplus ee^{\mathcal{I}}\right)\right]$
$= \ \beta^{\star}\ ^{2} = E\left[\operatorname{tr}\left(\Phi^{T}(\Phi^{T})^{T} \Phi^{T}\right) \right]$
$= \frac{1}{3} \frac{1}{2} E \left[t_r \left(\frac{1}{2} \right) \right]$
$= \frac{1}{3} \frac{1}{3} \frac{n}{d}$