SDS 387 Linear Models
Fall 2024
Lecture 24 - Tue, Nov 21, 2024
Instructor: Prof. Ale Rinaldo
• Last time: we assume a linear model with Goussian $c_{\text{svarialies}}$ $Y_{\text{av}} = \overline{D} T R^{\frac{1}{2}} + \overline{\epsilon}_{1}$
$\overline{D}_{1, -1}, \Phi_{1} \stackrel{\text{igh}}{\sim} N_{\text{al}}(0, I_{\text{al}})$ and
$\mathbb{P}_{1,\ldots,\mathbb{P}_{n}} \mathbb{P}_{1,\ldots,\mathbb{P}_{n}} \sim \mathbb{Q}_{0} \mathbb{C}^{2}$
We are interested in the exact expression for the expected excess risk of 3 215. If $n \ge 4+2$ then this
$6^2 \frac{d}{n-d-1}$
If n=d or dtz this value is 00.
Next if d >n we will consider the min-norm

least squares estimator \mathcal{B}^{T} $(\mathfrak{D}_{\mathcal{T}}^{\mathsf{T}})^{\mathsf{T}}$ Y AXA of full your $\int 3mN = 2 \Phi^{\dagger} Y$ D notvix with nxd oth row is Last time we storted analyzing the expected excers MUSA OF BANN : E [I/s - BMN ||2] T2 usual Everience, orthogonal projection = $\mathbb{E}\left[\left\|\left(\widehat{\mathbf{I}} - \overline{\mathbf{T}}\right)/\beta^{*}\right\|^{2}\right] + 6^{2}\mathbb{E}\left[\frac{1}{2}\left(\widehat{\mathbf{Q}}\right)^{2}\right]$ $= \frac{n}{d} \| \hat{\mathcal{A}} \|^{2} + 6^{2} \mathbb{E} \left[\frac{1}{d} \left((\mathbb{Q} \mathbb{Q}^{T})^{-1} \right) \right]$ on inverse Wishort with scale parametr (₫₫*)~' In and d beguess of freedom. The dragonal evitives are inverse of χ^2_{d-n-i} and have expectotions equal to S $d \ge n+2$ d=n or d=uti

. 	So putting Togother all these terms: $E\left[\left\ \frac{3^{4n}}{3^{4n}}-\frac{3}{3}mn\right\ ^{2}\right] = \begin{cases} 6^{2}-\frac{d}{n-d-1} & d \leq n-2\\ n-d-1 & d \leq n-2 \\ \ \frac{3}{3^{4n}}\ ^{2}\left[\frac{d-n}{d}\right]+6^{2}-\frac{n}{d} & d \geq n+2\\ d-n-1 & d \geq n+2 \end{cases}$
	therwise.
· · · · · ·	See Belvin, He, Xu (2020)
· · · · · · ·	Letting $f = \lim_{n \to \infty} \frac{dn}{n}$
· · · · · ·	$= \int \frac{1}{1-r} + r < 1$
· · · · · ·	$\frac{11}{3} + 6^{2} + 6^{2} + 5$
· · · · · ·	$\zeta_{0} = \zeta_{0}$
· · · · · ·	· Ridge regrassion has snoulder risk profiles when it
· · · · · · ·	is optimally toned $\lambda = \frac{\alpha^2 t}{N \Lambda^{a} H^2}$ tuning poromoteo for ridge
· · · · · ·	Solution: de cross-vollabotion see references.

INFERENCE $y_{n} = \Phi_{n} \sqrt{3}^{*} + \varepsilon_{n}$ $\Phi_{n} \sqrt{9} \Phi_{n} = \Phi_{n} \sqrt{3}^{*} + \varepsilon_{n}$ $\Phi_{n} \sqrt{9} \Phi_{n} = \varepsilon_{n} \Phi_{n} \sqrt{3} \sqrt{9}$ indep in this task, we are interested in estimating R^{*} assuming a rowton design and well spectred model.
If the model is well specified (i.e. $\mathbb{E}[Y \mathbb{D}] = \mathbb{P}^T/3^{*}$) this is a simple extension of Vou $(Y - \mathbb{D}^T/3^{*}) = 6^{-1}$ the analysis we did in the fixed-design cose.
• Assume throughout that $\underline{\mathcal{D}}^T \underline{\mathcal{D}} = \underline{\widehat{\mathcal{I}}}^T$ is invertible with prob. I They $\widehat{\mathcal{J}} = \underline{\mathcal{J}}^T$ $\underline{\widehat{\mathcal{J}}}^T = \underline{\mathcal{J}}^T$ $\underline{\widehat{\mathcal{J}}}^T = \underline{\widehat{\mathcal{J}}}^T$ $\widehat{\mathcal{J}} = \underline{\mathcal{J}}^T$
To see this, write $\hat{\beta} = \beta^* + \hat{z}^{-1} \hat{\underline{\Phi}}^T \hat{z}$ out refree that
i) $\hat{\Xi}_{1}^{i} \xrightarrow{P} \Xi_{1}^{i} = \mathbb{E}\left[\overline{\Phi}_{x}\Phi_{x}^{T}\right]$ by WLLN 50 $\hat{\Xi}_{1}^{-1} \xrightarrow{P} \Xi_{1}^{i}$ by CMT
$ \begin{array}{c} \hat{n} \\ \hat{n} \end{array} \qquad \qquad$

· · · · · · · ·	$\lambda_{n} = \lambda_{n} = \lambda_{n$
· · · · · · ·	by slutany
· · · · · · ·	Also
· · · · · · ·	$\operatorname{Vn}\left(\hat{\beta}-\beta^{*}\right) \xrightarrow{d} \operatorname{Na}\left(0,\theta^{2}\Sigma^{-1}\right)$
	This is become
	$\sqrt{n}\left(\frac{5}{5},\frac{-3}{3}\right) = \frac{21}{\sqrt{n}} = \frac{1}{\sqrt{n}}$
· · · · · · ·	$\stackrel{P}{\longrightarrow}$ $\stackrel{-1}{\swarrow}$
· · · · · · · ·	Next $\underline{\Phi} = n \underline{\lambda} = \frac{1}{n}$
 	L's normalized everage of kod rowlon vectors
· · · · · ·	We some that $\forall = IE \left[D_{1} \cdot E_{1} \right] = 0$. Also
· · · · · · ·	$\operatorname{Var}\left[\widehat{\Phi}_{A} \cdot c_{A} \right] = \mathbb{E} \left[\overline{c_{A}}^{2} \cdot \widehat{\Phi}_{A} - \widehat{\overline{c}_{A}}^{T} \right]$
· · · · · · ·	$= \mathbb{E}_{\mathbb{Q}} \left[\mathbb{E} \left[\mathbb{F}_{-}^{2} \mathbb{I} \mathbb{D}_{-} \right] \mathbb{D}_{-} \mathbb{D}_{-}^{T} \right]$
	$= 6^{2} \mathbb{E} \left[\Phi \Phi^{\dagger} \right] = 6^{2} \Sigma$

So by CLT
$V_n \stackrel{\Phi^T \Sigma}{\longrightarrow} N_d \left(0, 6^2 \stackrel{\Sigma}{\searrow} \right)$
Finally by Slutsny's theorem :
$\operatorname{Vn}\left(\widehat{B} - \widehat{B}^{*}\right) = \widehat{\Sigma}^{-1} \operatorname{Vn} \underbrace{\mathbb{D}}^{T_{\Sigma}}_{n} \xrightarrow{d} \widehat{\Sigma}^{-1} \operatorname{N}\left(9, 6^{2} \widehat{\Sigma}^{*}\right)$
$= N_{o} \left(O_{i} \sigma^{2} \mathcal{Z}^{-1} \right)$
(OR DISTRIBUTION - FREE)
· · · · · · · · · · · · · · · · · · ·
Assumption - Lean nears i) $E[Y \Phi] \neq \Phi^T/S^*$
2) rouden derign.
More generally, it means we are wit willing to make
assumptions beyond minimal ones that are needed
for the model to be well-defined (e.g. moment assumptions)
So, oscume (\$,4)~ Pay ER'XR
covariates/ features/ regressors fullyonn
Let's only assume that D and Y have Z from moments $\mathbb{E}[Y^2] < \infty$ and $\mathbb{E}[DD^T] = \frac{21}{d \times d} \mathbb{E}[DD^T]$

Then, trivually-
$Y = \mathbb{E} \left[Y_{L} \Phi \right] + \frac{Y - \mathbb{E} \left[Y_{L} \Phi \right]}{\mathcal{E}} $ $\frac{V}{\operatorname{regressum}} \xrightarrow{\mathcal{E}} by \operatorname{construction} $ $\operatorname{function} \mathbb{E} \left[\varepsilon_{L} \Phi \right] = 0$ $\operatorname{xelR}^{d} \longrightarrow \mathbb{E} \left[Y_{L} \Phi = x \right] so \mathbb{E} \left[\varepsilon_{L} \right] = 0$
In general Var $[c] \Phi$ moy depend on Φ
We saw that $\beta^{*} = \alpha \eta m m E[(Y - DT)^{2}] = \alpha \eta m m E[(Y - E[Y - D])^{2}]$ $\beta \in \mathbb{R}^{-1}$ $\beta \in \mathbb{R}^{-1}$
$\frac{projectors}{powometer} = \sum_{i=1}^{i=1} \mathbb{E}\left[\Phi, Y\right] \text{ompre } [$
In pointicular β^{\pm} satisfies the normal equations, $\Sigma_{1}^{1}\beta^{\pm} = \mathbb{E}\left[\Phi,Y\right]$ This implies that $\forall a \in \mathbb{R}^{d}$
$\mathbb{E}\left[\left(Y-\Phi^{T}\beta^{*}\right)\Phi^{T}a\right]=\mathbb{E}\left[\left(\mathbb{E}\left[YD\right]-\Phi^{T}\beta^{*}\right)\Phi^{T}a\right]=0$
(7)

With this in	mind up have the falkaling a
decomposition:	
$Y = \mathfrak{P}^{r} \mathcal{B}^{*} +$	(E[YID] - DY3*) + (Y - E[YID]) non linearity error
$=$ $\mathbb{P}^{\mathcal{S}}$ +	M. E.
$=$ \overline{D}^{T} \overline{B}^{A} $+$	$\mathcal{L}_{\mathcal{A}} = \mathcal{L}_{\mathcal{A}}$
lmportantly	$\mathbb{E}\left[s^{2}\right] = \mathbb{E}\left[m^{2}\right] + \mathbb{E}\left[\varepsilon^{2}\right]$
$A(s_{\circ})$	M is orthogonal (in L2 sonse) to the linear span of D:
	$\mathbb{E}\left[\mathcal{M},\mathcal{D}(j)\right] = 0 j = l_{j} \dots d$ $\mathbb{P} = \left[\begin{array}{c} \mathcal{D}(l) \\ \vdots \\ \mathcal{D}(d) \end{array}\right]$
	ε is orthogonal to all vivis of the form $f(\underline{D})$ some $f: \mathbb{R}^d \rightarrow \mathbb{R}$
· · · · · · · · · · · · · · · · · · ·	s.t. $Var (f(Q)) < co$
	In particular E[E.M]=0 is function of D (8)