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* RECAP OF DETERMINISTIC CONVERGENCE
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· Much of what we are going to
say is valid
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more general settings. For example ,
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an = 0 (1) means [en3 is bounded
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#> STACtASIC CONVERGENCE

- capital letters
deuta roudon

variables

·Suppose EXn3 n= 1
,

z
. ... is a sequence of rembe

vectors
.

· Notation : for an event A (collection of possible
outcomes)

PP(ut) is the probability thatA
eccurs

ouple : zvN(1) A= [1z1 1
.983

Almost sure or almost everywhere convergence

AKA convergence with probability 1

Let EXn7 be a
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another vanibe variable (possibly degenerate)
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deterministic convergence is 1!

· This is a very strong form of convergence!

· Equivalently say
:
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