SDS 387
Linear Models
Fall 2025
Lecture 2 - Thu, Sept 4, 2025

Instructor: Prof. Ale Rinaldo

Then
$$X_n \stackrel{d.S}{\sim} X$$
 as $n \rightarrow \infty$ when

$$P\left(\left\{\begin{array}{cc} lim & d\left(Xn, X\right) = 0 \end{array}\right\}\right) = 1$$

$$P\left(\left\{\begin{array}{c} 1 \text{ Im sup } d\left(X_{n_1}X\right) \leq \left\{\right\}\right) = 0$$

the probability that infinitely
often
(or 1.0.) d (Xn, X) se liminf and limsup of a sequence of events Let $\{An\}_{n=1,2,...}$ be a sequence of events for exemple toke $An = \{d(xn_i x) \in \}$ limsup An = 1 U Am <=> An limpoens lim int An = U Am = > · An · happens eventually Case. An happens for all in large) For convergence up 1: let, for 2 given $\Sigma > 0$ $A_{n,s} = \{ d(X_{n,x}) \in S \}$. Then Xn X means $\left(\bigcup_{n \in \mathbb{N}} A_n \right)^{s} = \bigcap_{n \in \mathbb{N}} A_n^{s}$ P(lingup Ang) = 0 [(MAn) = WAIN

D= Morgon's Law IP (lim inf Ance) = 1

Remark: Convergence up 1 requires you to have some control / knowledge of the joint distribution of {Xn3n=1,2,... aux X. A weaver and more useful notion of stochastic Convergence in probability { Xn}n=1,2,... and X = often degenerate

Small 4EZ0

I'm $P(\{d(X_n, X) \geq \epsilon\}) = 0$ now

wrotten

we only need to control the

Xn = X

distribution of Xn and X

for each n.

The Convergence up 1 implies convergence in

PAY Let $C = \{ \lim_{n \to \infty} d(x_n, x) = 0 \}$. They $x_n = x_n = x_n$

probability.

$$C_{n} = C_{n}(\varepsilon) = \begin{cases} d \left(X_{s}, X\right) \leq \varepsilon, & \forall K \geq n \end{cases}.$$

$$Then \qquad C \leq \bigcup_{n=1}^{\infty} C_{n}, & S_{n}, & P\left(\bigcup_{n=1}^{\infty} C_{n}\right) = 1.$$

$$N_{ext}, & C_{n} \leq C_{HL}, & all & n. & Therefore.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{p} P\left(C_{n}\right) \Rightarrow 1 \quad as \quad n \Rightarrow \infty.$$

$$F_{ect} : \underset{Pochsilery}{constriver} g^{$$

So
$$X_1 = 1$$
 $X_2 = 1$ of $U \in [0, 1/2]$
 $X_3 = 1$ of $U \in [1/2, 1]$ $X_4 = 1$ of $U \in [0, 1/2]$
 $X_5 = 1$ of $U \in [1/2, 1/2]$ $X_6 = 1$ of $U \in [1/2, 3/4]$
 $Q: X_1 = 0$?

 $V_{0.5}U$

For any $E \in [6,1]$
 $P(|X_1| X_2) = |P(|U \in [\frac{n-2^n}{2^n}, \frac{n-2^n-1}{2^n}])$
 $A(X_1, X) > C = \frac{1}{2^n} \rightarrow 0$

become $K \rightarrow \infty$ as

 $N \rightarrow \infty$
 $N \rightarrow \infty$

Yes become
$$\forall x \in G_{11}$$

$$P(|X_n| \times x) = P(|x_n| \times x) = P(|x_n| \times x)$$

$$= \frac{1}{n} \Rightarrow 0$$

$$Q: X_n = 0? No!$$

Let's see why thus is the case (non trivial!).

We will show that $\forall x \in G_{11}$ $P(\{|X_n| < x \text{ overtrality}\})$

$$= 0$$

$$P(\{|X_n| < x \text{ eventvally}\}) = P(|x_n| \text{ in in } A_{n,x})$$

$$= |x_n| = 0$$

Union bounds or constable subscription $f(x_n) = 0$

$$= P(|x_n| \times x) = P(|x_n| \times x)$$

$$= \prod_{m=n}^{K} (1-1) \qquad \text{by independe of the } U_n \leq 1$$

$$R(\bigcap_{m=n}^{\infty} A_{m,\epsilon}) = \lim_{m\to\infty} \prod_{m=n}^{K} (1-1) \qquad M=n$$

$$= \lim_{m\to\infty} 1-2 \leq 2$$

$$\leq \lim_{m\to\infty} 2 \times p \left\{ -\frac{2}{m+n} \prod_{m}^{K} \right\}$$

$$= 0$$

$$= \lim_{m\to\infty} \frac{1}{m} = \lim_{m\to\infty} \frac{1}{m} \times \lim_{m\to\infty} \log_m = \infty$$

$$R(\{1 \times n\} < \epsilon \text{ eventually}\}) \leq \lim_{m\to\infty} \frac{1}{m} R(\bigcap_{m=n}^{K} A_{m,\epsilon})$$

$$= \lim_{m\to\infty} \frac{1}{m} = \lim_{m\to\infty} \frac{1}{m} R(\bigcap_{m=n}^{K} A_{m,\epsilon})$$

We have just proved:

Borel - Courtelli's Second Lenna H ZAnz

is a sequence of independent events and $\mathcal{F}(A_n) = \infty$ then $\mathcal{F}(\lim_n A_n) = 1$ Example { Xn} are independent with

Xn N Bernoulli (pn)

P({ Xn = 1 1.0.}) = ?

Pre(Pri)

If $5p_n = 00$ it is 1