SDS 387 Linear Models Fall 2025 Lecture 5 - Tue, Sept 16, 2025 Instructor: Prof. Ale Rinaldo HIN 1, $$Q2$$ (2): we need extra assumption, e.g. $|Xn| \le a$ now bonus problem! (boundedness assumption) H can be relaxed, e.g. by assuming a finite 4th moment and assing Paky - Zygnund: · In the proof of Glivenzo-Contelli, we set $$A_n = \{|\hat{F}_n(z_n) - \hat{F}_{\kappa}(z_n)| < \epsilon, \text{ eventually }\}$$ $$\Rightarrow \exists n \text{ s.t. the inequality is two is readen!} \quad \text{for out } n \ge n$$ Since $|P(A_n) = 1|$ and z , $P\left(\bigcap A_{n} \right) = 0$ $\begin{cases} F_{n} & \text{for } (x_{n}) - F_{n}(x_{n}) | (x_{n}) = n \end{cases}$ If there are finitely many i, take " = max ni LP convergence $X_n \rightarrow X$ means $11 \times n - \times 1/p \rightarrow 0$ 05 $11 \times 1/p = (E[121])^{1/p}$ P=2 is the most common, gives mean squared for rising Lp spaces (the Lp space is the space 27. 2 X 27. V. Y 2 X 5.7. 11×110 (00) X, Y elp X+Y & Lp X, Y ELP X+Y & LP Cy inequalify because for every $x_{i,y} \in \mathbb{R}$ $|x_{i,y}|^p \leq \begin{cases} |x_{i,y}|^p & 0 \leq p \leq 1 \\ 2^{p-1} \left(|x_{i,y}|^p + |y_{i,y}|^p\right) & p \geq 1 \end{cases}$ Minkowske: 1 x + Yllp & LIXllp + 11 Yllp Hölder inequality: if XELP and where piq= Yella. are conjugate . then $\frac{1}{p} + \frac{1}{q} = 1$ $$E[XY] \leq \sqrt{E[X^2]} \sqrt{E[Y^2]}$$ inequality Proof uses another important inequality: function then $$E[f(x)] \ge f(E[x])$$ $$E[o(1)]$$ $$E[o(1)]$$ $$\leq \kappa f(x) + \frac{1}{(1-\kappa)} \int_{-\infty}^{\infty} \frac{1}{(1-\kappa)} f(x) dx$$ LE [OIT] (L-X) $$f(x)$$ If f is concove E[X()] f E[X()] $$\mathbb{E}\left[|X|^{p}\right] = \mathbb{E}\left[|X|^{p}\right]^{\frac{q}{2}} = \mathbb{E}\left[|X|^{p}\right]^{\frac{q}{2}}$$ $$\begin{split} &= \mathbb{E}\left[\left[X\right]^{\frac{q}{p}}\right]^{\frac{q}{p}} & \text{becouse} \\ &= \mathbb{E}\left[\left[X\right]^{\frac{q}{p}}\right]^{\frac{q}{p}} & \text{concave} \end{split}$$ Recall Lost time we define the Los norm of X 11×110 = inf {2 = P(x>2)=0} essential supremum You can show that 11×11, 7 11×1100 or p > 00 Back to convergence: Lp converges is stronger (ce it implies) convergence in probability: 11 ×n- Xlip $\mathbb{P}\left(\left(\left(X_{n}-X_{n}\right)\geq\varepsilon\right)\right)$ expiterily Markouls ineq P(XEE) SECK In general, Lp convergence and ~ do not imply each other. Examples: let $X_{n} = g_{n}(U) = \begin{cases} n & 0 \leq U \leq \frac{1}{n} \\ 0 & 1 \leq U \leq 1 \end{cases}$ but 11 X, 11 p = n P-1 $X_n \Rightarrow \frac{1}{U}$ but $\frac{1}{U} \not\in L_p$ only $p \geq r$ UN (mifam(o,1) R CONVERCENCE IN DISTRIBUTION OR WEAK CONVERGENCE Weakost form of stochastic convergence. Let {X1} be a sequence of roudon variobles out X a roudon variable taking values in R. Let fx, and fx be the coff of Xn and X respectively Xn converges in distribution to X when for every x = R st. Fx is continuous $\lim_{n \to \infty} F_{x_n}(x) = F_{x_n}(x)$ this ustran does not impose any restriction on the joint dirtribution of [Xn] and X. So, recall the examples from lost time: Xn ~ Bernoull (2 mm) XN Bernoulli (12) they Xn > X but we connut soy anything about convergence in prob Similarly if X = Z ~ N(Oil) and $X_{0} = (-1)^{2}$ become $X^{n} \xrightarrow{s} X^{n} \xrightarrow{s} X^{n}$ then ×n / × Xn = X neons that Xn and X have the some distribution and so, from the paint of view of convergence in fistribution, they are identical. But their realization can be very different. The restriction that Fxn(2) > Fx (2) for a continuity point of Fx is necessary! lin Frig) = Fx(2) with prob Example: X1 -> X~ Bernoull (42) 1, not 2 continuity point of Fx $Fx_n(i) = \begin{cases} 1 & n \text{ odd} \\ 1 & n \text{ even} \end{cases}$ 4) Convergence in distribution is quite general. $$F_{\times_n(z)} = \begin{cases} 0 & z < -n \\ \frac{\Phi(x)}{\Phi(x)} - \frac{\Phi(-n)}{\Phi(-n)} & -n \leq x \leq n \end{cases}$$ $$\boxed{\Phi(x)} = \begin{pmatrix} 0 & x < -n \\ \frac{\Phi(x)}{\Phi(x)} - \frac{\Phi(-n)}{\Phi(-n)} & -n \leq x \leq n \end{cases}$$ $$\boxed{\Phi(x)} = \begin{pmatrix} 0 & x < -n \\ \frac{\Phi(x)}{\Phi(x)} - \frac{\Phi(-n)}{\Phi(-n)} & -n \leq x \leq n \end{cases}$$ $$\boxed{\Phi(x)} = \begin{pmatrix} 0 & x < -n \\ \frac{\Phi(x)}{\Phi(x)} - \frac{\Phi(-n)}{\Phi(-n)} & -n \leq x \leq n \end{cases}$$ $$\boxed{\Phi(x)} = \begin{pmatrix} 0 & x < -n \\ \frac{\Phi(x)}{\Phi(x)} - \frac{\Phi(-n)}{\Phi(-n)} & -n \leq x \leq n \end{cases}$$ $$\boxed{\Phi(x)} = \begin{pmatrix} 0 & x < -n \\ \frac{\Phi(x)}{\Phi(x)} - \frac{\Phi(-n)}{\Phi(-n)} & -n \leq x \leq n \end{cases}$$ $$\boxed{\Phi(x)} = \begin{pmatrix} 0 & x < -n \\ \frac{\Phi(x)}{\Phi(x)} - \frac{\Phi(-n)}{\Phi(-n)} & -n \leq x \leq n \end{cases}$$ $$\boxed{\Phi(x)} = \begin{pmatrix} 0 & x < -n \\ \frac{\Phi(x)}{\Phi(x)} - \frac{\Phi(-n)}{\Phi(-n)} & -n \leq x \leq n \end{cases}$$ $$\boxed{\Phi(x)} = \begin{pmatrix} 0 & x < -n \\ \frac{\Phi(x)}{\Phi(x)} - \frac{\Phi(-n)}{\Phi(-n)} & -n \leq x \leq n \end{cases}$$ i) non-decreosing and non-negative 2) right-continuous $$\lim_{y \to x} F(y) = F(x)$$ with left limits $$\lim_{y \to \infty} F(y) = \lim_{y \to \infty} F(y) = 1$$ Then $$F(y) = D$$ Im $F(y) = 1$ y = ∞ Then $F(y) = D$ Im $F(y) = 1$ y = ∞ Soly $$X$$ 5.7. for any $a < b$ $$P(a < X \leq b) = F(b) - F(a)$$ $$P(x \in Ca, b7)$$ cost's one representations of prob. measures. one can define its add as $n = (n_{i,2i}) \qquad = P \left(\bigcap_{j=1}^{d} \{X(j) \leq x(j)\} \right)$ colf at α is $P((x_i) \in A)$ A It is not difficult to show that f_X satisfies properties (1, 2) and (3) above provided that (3) is token element-wise (1.6.4) (1.6. A function on R that satisfies 2012 (i) all properties i), 2) and 3) however does not necessarily define a prob. distribution! Let $$A = (a_1, b_1] \times (a_2, b_1)$$ of $A = (a_1, b_1) \times (a_2, b_1)$ of $A = (a_1, b_1) \times (a_2, b_1)$ of $A = (a_1, b_1) \times (a_2, b_1)$ from then $$A = (a_1, b_1) \times (a_2, b_1)$$ $$A = (a_1, b_2) \times (a_1, b_2)$$ $$A = (a_1, b_1) \times (a_2, b_1)$$ ($$ x , x2 =1 21 2 0 E X2.< 22 > 1 0 < x . < 1 Example_ $f(21,22) = \langle 1 \rangle$