SDS 387 Linear Models Fall 2025

<u> écture 13 - Tue, Oct 14, 2025</u>

Instructor: Prof. Ale Rinaldo

Some useful linear algebra references:

- Mostrix Analysis by Horn & Johson & very rigorous & comprehensive
- Mostrix Computations by Golub } Algorithmic focus
- · Mostrix Perturbation Theory by Sun & Stewart
- Linear Algebra Done Right by Axler Introduction vertexences
 Introduction to Applied Linear Algebra by Boyd available
- Appendix to Plane Answers to Stople Questions (available online by Christenses from Springerline)
 - rest the statiscs/ML results about linear models, we will use next the book: Learning Theory from First Principles by Francis Bach (available online
 - · Matrix Algebra: Theory, Computations & Applications in

(Springerlink)

the will be working in Rd or linear room or linear room of points in Rd Vector space (over R): a collection of points in Rd closed but scolor multiplication our addiction (our hot a 0 (zero) element). M vector space in IRd: 200 CM => 2x+ by c M A linear subspace N of a tack sur linear space M is a solet of M that is oilso a linear space. In 18th $\begin{cases} x = \begin{cases} x_i \\ \vdots \\ x_{k+1} = 2k+2 = \cdots = 2k d = 0 \end{cases} \end{cases}$ i < k < d i < k < d i < k < dGeometrically linear subspaces in R2 are lines through the origins A funck about of M {vi, -, vi} is a set of linearly independent vectors 21 av 1 =0 = 21 = 32 = ... = 34 = D ed linear combination

2

A set of linearly ind vectors {vi ... , vr} Spoin 2 schopper N (of Ral) when every ZEN con be written as a linear combination of the un's. In this case the wis are called a basis of N. Boses are not unique but the unique and is colled the dimension of N Fact: it [vi, --, uv] form a bosis for then the N I lai, - , ar of a umque set $\chi = \frac{1}{2} \frac{1}{2}$. It No and No are suppees, so are $N_1 + N_2 = \begin{cases} x \in \mathbb{R}^d : x = x_1 + x_2 \\ some x_1 \in \mathbb{N}_1 \text{ out } x_2 = N_2 \end{cases}$ · What about N. U. No? no

(3)

If
$$Ni \cap Ne = Eo3$$
 then

direction ($Ni + Nz$) = dire (Ni) +

direction ($Ni + Nz$) = direction ($Ni + Nz$)

In R^d there is a notion of immore product

a punction (i): $R^d \times R^d$ that

is symmetric (i): i)

(i) (i) (i) (i) = i) (i) (i)

(i) (i) (i) (i) (i) = i) (i)

 $\langle z, y \rangle_{A} = xTAy$ (2. $y \rangle_{A} = xTAy$ (3. Ai, $z : z_{0} > 0$ (5. on inner product

(5.)

(5.)

(5.)

(6.)

(7.)

(7.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

(8.)

An orthogonal basis is a basis consisting of orthogonal vectors. It is orthonormal when the basis elements have unit norm i.e. IIII=1 all basis elements

If vi, -, vr is a Gossi for a r-dimensional linear subspace you can always fund an arthronormal basis. This process is called the GramSchmidt orthogonalization:

Semmet orthogonomization: $y_1 = \frac{v_1}{\mu v_1 | l}$ $v_1 = \frac{v_1}{\mu v_1 | l}$ $v_2 = \frac{v_1}{\mu v_2 | l}$ $v_3 = \frac{v_1}{\mu v_3 | l}$ $v_4 = \frac{v_1}{\mu v_2 | l}$

Then y, -- , yr bosis of N. (5

If N is a linear subspace of Ro, its orthogonal complement (in Ro) w the linear 80/22 bace N'= {x e R 1 < 2, y > =0, ty e N } Foot: NAN = [0] Any vector xeRd con be written uniquely of x = xN + xN+ where x = N XN E W Livect SUM by definition (n, n, > =) R = N + N = and d = din (Rd) = din (Nd) + din (Nd) Foet = (N, A N2) = N, + N2 MATRICES In Rd a vector is a 1-din array of numbers.

A motrix is a 2-dim errory: $A = (A_{i,i})_{i=1,...,n} \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ where $A = (A_{i,i})_{i=1,...,n} \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$

Set of notices one closed under scalar nothologian (provided that they are of the some 8122) no Tibbo huo MXN NXK Notion of product: conformal Chi = Z Aire Bejj non-commutative In general Big True. AS # BA

linear subspace of C(A) = R(A)~ W XV RM spanned by columns of A adumn rouge of A

Kernel (A) linear subspace in nullspace (A) R" {261R": Ax=0} the notrok

Transport of A = (Anii) $A^{\uparrow} = (A_{\dot{0},\dot{0}})$

 $(AB)^{T} = B^{T}A^{T}$

A is symmatric when

A square nature is aliagonal when Azij =0 In oliogonal natrix with unit elements larg olioporal In A = AIn = A The inverse of A is the matrix A'sil. always exist! A-1'A = AA-1' = In The inverse is unique! Note - (AB) - B-'Aof A is invertible at is sound to be This happon up rounk (A) = n that linearly intep. vow or · Foct: if dim (R(A)) = r then den (null(A)) = n-r

- hos orthonormal A notice U is orthogonal when The trace of A is $tr(A) = \frac{1}{2} A_{c,a}$ tr (aA + B)=atr(A)+tr(B) tr(1) has a die property tr (ABC) = tr (CAB) = tr (BCA) to the (ACB)

In fact one can use the tr(.) to define an inner product over space of squared motrices: $(B,A) = (A,B) = tr(AB^T) = tr(BTA)$

A . LE C : an argennatur of A

N×n

(A - LTn) is singular

det (A- LI) = 0 If deR is an eigenvalue of d its corresponding eigenvector is a = R" sit $A_{n} = A_{n} \qquad (i \in (A - \lambda P)_{n=0})$ if A has r ≤ n eigenvolves di, ..., di then

det (A-D) = T (Ai-D) J muttiplicary · If a an eigenvalue of A, the de son of the linear subspace note (A-JIn) is the geometric multiplicity of & · Simple eigenvalue: have muthplicary 1 A is symmetric then eigenvolves are real and there excepts a voviational disracterisation

We can fund all the eigenvalues of A by

solving a polynomial equation:

Courant -Fisher alin (N)=i characteristus MAX XFAR dun (7) = n-n+ NxK= di = dnox (A) = max xIAx Lower (A) = may 20 A De An-i- mon wiAn 11245 $\mathcal{S}_{N-n+1} = \mathcal{S}_{pon} \left(V_{n}, \dots, V_{n-n} \right)$ eigenvectors orthogonal. dr+c, -- dn=0 rank (A) = r on then

Spectral Theorem rounk (A) = r Then langonertro sal -plumus Spanning. (CA) $= \underbrace{\sum_{i=1}^{n} \lambda_{i} \cup_{i} \cup_{i}}_{\text{nxn}}$ with super $\underbrace{\sum_{i=1}^{n} \lambda_{i} \cup_{i} \cup_{i}}_{\text{rown}}$ = diagonal matrix ecdeurona, por of ergenvolve Eigenspace of eigenvalue di expensector mul (A-LI) positive (semi) definite when $xTAx \ge 0$ $\forall x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$ Z AN, 2025 negotive (seni) befink if 2TA250 trelk If I a the covariance nation of a roude of vector $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ (i.e. $Z_{i,j} = c_{sv} \begin{bmatrix} x_{i,j} \\ x_{j} \end{bmatrix}$) then \$1.50, becomes

ct 21c = Var [ct X] \geq 0, to eR