Fall 2025

Lecture 18 - Tue, Oct 30, 2025

Instructor: Prof. Ale Rinaldo

B = B+

Recall that if
$$R(B) = \mathbb{E}\left[\left(Y - XB\right)^{2}\right]$$
is the prediction risk associated to $B \in \mathbb{R}$

then

$$R(B) = \|B - B^{*}\|_{L^{2}}^{2} + \mathbb{E}\left[\left(Y - \mathbb{E}\left[Y|X\right]\right)^{2}\right]$$
extimation $+ \mathbb{E}\left[\mathbb{E}\left[Y|X\right] - XB^{*}\right]$
where $B^{*} = \mathbb{E}\left[XX\right]^{-1}\mathbb{E}\left[Y - XB^{*}\right]$
unor linearity
$$Projection powerests$$

R(B) = 62 + M2

because
$$(/\beta - \beta^* / 2 = 0)$$
 lif $\beta = \beta^*$
and $(\beta - \beta^* / 2 = 0)$ $(\beta - \beta^* / 2 = 0)$

$$\beta \in (R^4)$$

$$\begin{array}{ccc}
\text{ref} & \mathbb{E}\left(\mathbb{E}\left[Y|X\right] - X^{2}S\right) & = m^{2} \\
\mathbb{E}\left(\mathbb{E}\left[Y|X\right] - X^{2}S\right)^{2}
\end{array}$$

$$S \subseteq R(B) - R(B^*)$$
 Excess risk of B

Of course if linearity holds, i.e.
$$E[C] = 0$$

$$Y = XTB^{+} + E \qquad E \perp X$$
then $M = 0$ and

$$R(\beta^*) = 6^2 = \mathbb{E}\left[\left(Y - X^{\dagger}\beta^*\right)^2\right]$$
$$= \mathbb{E}\left[\left(C^2\right)^2 = Var(\Gamma)\right]$$

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} \in \mathbb{R}^n$$

$$0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\Phi_{\lambda} = \mathcal{C}(\lambda_{\lambda}) \in \mathbb{R}^d$$
 feature

plug-in estimator of B*

B = organia R(R) $\mathbb{R}(B) = \mathbb{E}_{n} \left[(Y - \mathbb{D}^{T} B)^{2} \right]$

$$= \frac{1}{n} \int_{-\infty}^{\infty} \frac{1}{n} \int_{-\infty}^{\infty} dx dx$$
Then
$$\int_{-\infty}^{\infty} \frac{1}{n} \int_{-\infty}^{\infty} dx dx$$

 $\frac{1}{N} = \frac{1}{N^{2}} \left(\frac{1}{N^{2}} - \frac{1}{N^{2}} \right)^{2}$ $\frac{1}{n} \left\| \frac{1}{n^{2}} - \frac{1}{n^{2}} \right\|^{2}$ $\hat{\beta} = (\Phi^T \Phi)^{-1} \Phi^T Y$ OLS estimator D has full column rank (=d) that = DID invertible (chack)

Pf/ The function $B \in \mathbb{R}^d \longrightarrow \hat{R}(B) \in \mathbb{R}$ is strictly convex because it thession (dxd notice of mixed 2 devicatives) is 2 = 1 B D > 0 by assumption for all BER So B is the only vector site $\nabla \hat{R}(\hat{\beta}) = 0$ $\frac{2}{n} \quad \overrightarrow{D}^{T} \left(\overrightarrow{V} - \overrightarrow{D} \overrightarrow{A} \right) = 0$ DD B = DTY Normal equations inverting of \$PTD we get (18100 $\hat{\beta} = (\hat{\Phi}^{\mathsf{T}} \hat{\Phi})^{\mathsf{T}} \hat{\Phi}^{\mathsf{T}} Y$ Geonetric interpretation I mast subspace
in IR spanned
by columns of D, 1. é

COD) G

where $\hat{Y} = \hat{B}\hat{B} = \hat{B}(\hat{D}^T\hat{D})\hat{D}^TY$ where H, the hast matrix, is the orthogonal projection onto C(D). (H is symmetric and H2=+1++ +1 =+1)- $Y = \hat{Y} = (I_n - H) Y \in \mathbb{R}^n$ residuals also a orthogonal projection (symmetrie + idemportent) onto C(D) Direct sum decomposition $y = \hat{y} + e$ where $(\hat{y}, e) = 0$ $\frac{\|\hat{y}\|^2}{n} = \frac{\|\hat{y}\|^2}{n} + \frac{\|e\|^2}{n}$ 1/2 = 5 Yi2 + Zien least squares proportion of energy, explained by the mobel

(5)

Numerical considerations. How do you compute 13? 1) Requires notrix inversion of BD order d³ in fact order n-d² Gradient descent iterative procedure that storting from BoeRd (Bo=0 or any point in the orthogonal complement of kernel (D) apply the following recursion: $\beta_t = \beta_{t-1} + \gamma \nabla \frac{\hat{R}}{2} (\beta_{t-1})$ >0 stepsize or learning rate = Bt-1 - 8 (DT (Bt-1 - Y)) n.d out of t-30 This has complexity 36 -> B See section 5.2 of Boch's

6

What if DTD is not invertible? Assume rank $(\Phi) = n$ (for example of >n). Then the normal equations DE BETY have infinitely many solutions, because if say B'solve the normal equations, so does where ve kerne! (D) () { 2 = R d : () 2 = 0 } $\Phi^{T}\Phi(\hat{\beta}+V) = \Phi^{T}\Phi\hat{\beta} + \Phi^{T}\Phi_{V}$ because. $= \Phi^{\uparrow} \Phi^{\hat{\beta}} = \Phi^{\uparrow} \Phi^{\hat{\beta}} = \Phi^{\hat{\beta}}$ · When rame (D) = n then any solution is to the normal equation is such that 14 = DBB = 44 ie. (3) = 0 and the model interpolate the data

7

Among the infinitely many solutions to the normal equations there is a communal one the min-norm solution, the one with smallest Euclidean norm - This is defined of $\hat{\beta}_{MN} = (\Phi^{T} \Phi^{T})^{T} \Phi^{T} V$ where for a A ds More Penrole pseudo inverse A+ is a nxm moths is $AA^{+}A = A$ (AA maps columns of A to thenselve)
so it is an intentity
on ((A)) $A^{\dagger}AA^{\dagger}=A^{\dagger}$ and AA+ is symmetric $\operatorname{keyne}((A^{+})) = \operatorname{keynel}(A^{T})$ $\subset (A^{+}) = \subset (A^{T})$ Extra properties AA and At A are idemportant orthogonal projection orthogonal projection suits C(AT) is now space of A

of $A = U \sum_{k=1}^{\infty} V^{T}$ where $\sum_{k=1}^{\infty} V^{T}$ where $\sum_{k=1}^{\infty} V^{T}$ where $\sum_{k=1}^{\infty} V^{T}$ with positive diagonal elements.

Then $(A = V \sum_{k=1}^{\infty} V^{T}) V^{T}$ and $K = V \sum_{k=1}^{\infty} V^{T}$ and $K = V \sum_{k=1}^{\infty} V^{T}$.

 $\hat{\beta}_{MN} = \overline{\Phi}^{+} Y = \text{avanin } \{MSII = \Phi B = Y\}$

Bock to interpolation (i.e. rouk (1)=n)

and gradient descent -> Bonn

9