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· Recall that If R/B) = E((Y-X1)]
d

is the prediction risk associated to BEIR
verance

Then

R(b) = 3 -/-estimation
where S

P

=
E(xX]"ETY . X]

~

projection parameter

· If B = BP Then R(% = 02 + +2

=infRB



because 113-1112 = 0 If B=S
*

and inf ES[e[TIX] - x)<] = yz
BERd

= e[m]-xis)]
↓

o = R(b) -

R(b) Excess risk of S

· of course if linearity holds
,

1
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E[C] = 0

y = XB + c & X

then n = 0 and

R(P = v= ET(- X+197

= #[c] = var(s]
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Back to last lective : (i
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design metrix or feature matrix
&



ith

E = &(X _) -IR" feature

The plug-in estimator of $* feather the projection
parameter or

the linear parameter
If the model is

irnear)
where=ergwRC

empirical -
R(B) = En [2-3)]

risk

= -B) 2

=IY-

·

Then = C"Y
↓

OLS estimator

that has full column ran (d)vided
↳>
F invertible

↓ dxd

This requiresd (chean) ! ⑬



PF) The function BERP -> R(B) e

is strictly convex because its Hessian

Load matrix of mixed 2" derivatives) is

&= So byauth"
Sos the only vector st.

DR(j) = 0

I

- (4-53) =
0

I
V

= Y Normal eprations

Using inverting of B we yet

= LED)"Y
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· Geometric interpretation y
&

in
Hel

/ lineer subspace

↓
in IRh Spanned

,
we

by columns of
ok ( - ) = dan C(I)&



where = E=V

fittedvalues
=
HY

where H
,

the hot matrix
, is the orthogonal

projection onto <(5) · (th is symmetric and

+= +. + = H)
-

= y - Y
= (In - H)Y - Rh· Next E

V
um

residuals
also e orthogonal projection

(symmetric + idempotent)
onto <(b)

+

· Direct sun decomposition

y =
Y + e SY

, e = owhere

=
#

=E
↳ least squares

error

↓

-proportion of

energy , explained by themovel
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· Numerical considerations. How do you compute ?

& Requires matrix inversionof

order o in fact order n -d

2) Gradient deccent iferative procedure that

starting from Both or

any point in the orthogonal complement

of Kernel (t))
apply the following recursion :

t + 1 St = Bz - 1 + yX(t )
↓

so stepsize or

learning rate

=St-U (EB+ - y))

This has complexitynd and as tag

↓
b + -5

See section

5.2 of Bach's

book
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· What if ETE is not invertible ? Assure

ronk (E) = n (for example
,

dan) .

Then the normal equations

#1= Y

have infinitely many solutions
,

because of say

& solve the normal equations ,
so does

3 + v

where vs verme !(E)
↳Suer" : Eu = oh

because ( +v) = E +G
=D

~

= D
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· When rann (E) = 1 then any solution

-

S
to the normal equation is such that

Y
=S = Y

. e . &(1) = 0 and the model

-

-erpolate the data ⑰



· Among the infinitely manysolutions to the

normal equations there is a canonical one :

the win-room solution the one with smallest
S

Euskean norm . This is defined a

Em = +Y

where fora its Moore-Penvale

pseurb inverse At is a num matrix of

1) AATA = A JAA" maps columns of

A to themselves
,

So it is an identify

on <(A)
er) ATAA" =

At

e-) AAt a symmetra

AtA

· Extre properties vermel (At) = Kernel (A)

2(A+ ) = C(A))

AAT and ATA are idempotent
↓ V

orthogonal projection ortheonel projection
outo <(A) outs C(AT) wa ki space of A
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where I
· #AUV is okagonal

with positive
diagonal elements

Then

(the singular values

A =
VE "vi

and k = rann (A)

· Back to interpolation ( ... ronn (E) =n)

Em = EY = arguin [11 St . EB = 4)

and grasliant descent -> En

⑨


