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Today finish the proof of minimax optimality of the

as estimator when is the model is linear and the

covariates are fixed .
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· Remark : the extension to the ramba design case can be

found in Mourtana's paper.
The result is thesome
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as estimator is minimax estimatorIf the moves is

lineer.
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This is a
standard argument : lower borns the maximal

possible rusk of any estimator A( . ) over all

BER" by the everage rism of t ( .)

with respect to a carefully closen distribution for

& (e prior)

· Next
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Next
,
we have that
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Because CAS the expression reduces to
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This is a lower bound on the mininex risk
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Notice rust to (2+) )=x

whereij is the ith eigenvalue of G.
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This is the excess room of I als
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· About minnaxity for estimation : let P
= [Per8]

bea paramatica family of prob ,
distributions

(e parametric statistical model) . We are interested

in estimating A
,

the true parameter , st,

function of
X,
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For
any estimator E of
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(where E =* (X.. ... Xn))

let ((E , 8
*) be the loss function

associated to 1 Leg. ((E :A% = 1 E -* 1) .

The risk of 8 is the function

[L(e] = ReidA> #
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* natural lower bound on the minimax rish as the

Bayel rusk
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a procedure attaining that infirum is called a

Bayes procedure wit it
.

When the loss function is e. p. quedratic , the

Bayes procedure is the potterior mean of

A

· If Eval is a sequence of priors s
.
t
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R (in) -> V as nac

and & is a procedure st

sup & (1) = r
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Then * is mininex ->H

· Reverse
: If the covariate (i . e .
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arerandom
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the risk of als is
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This is also the minimex risk .

Sea Mourtada's
paper .

* Statistical Inference For $8

As before we use a well-specified I near model

ie
.&uol fixed covariates ,

*
uncneira

Y=3 +5

nX 1 Y ↳ 10
,of

fixed

Goal : to estimate and carry not statistical inference

for B, in fixed dimensions (I. e . o is

fixed)

· Is the als consistent ?
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