SDS 387 Linear Models

Fall 2025

Lecture 22 - Thu, Nov 13, 2025

Instructor: Prof. Ale Rinaldo

Today finish the proof of minimax optimality of the OLS estimated when is the model is linear and the coverates are fixed. That is, our data country of $Y = \begin{bmatrix} y_1 \\ y_n \end{bmatrix}$ st.

Thus unknown coeff. $Y = DB^* + E$ Let Y = Ewhere Y = E Y

Remark: the extension to the roundom obegings case can be found in Mourtanda's paper. The result is the san the out estimator is minimax astimator if the model is linear.

Lost time we established the following Lower booms

Inf sip
$$\mathbb{E} \left[\mathbb{R} \left(\mathcal{A} \left(\mathbb{D} \mathcal{B} + \varepsilon \right) \right) \right] - 6^2$$

A $\mathcal{B} \in \mathbb{R}^d$ $\mathcal{E} = \begin{bmatrix} \varepsilon_i \\ \mu_i \end{bmatrix}$

He wide $\mathcal{A} = (0.6^2)$

Where $\mathcal{B} = \mathbb{E} \left[\mathbb{E} \left(\mathcal{A} \left(\mathbb{D} \mathcal{B} + \varepsilon \right) \right) \right] - 6^2$

Where $\mathcal{B} = \mathbb{E} \left(\mathcal{B} \right) = \mathbb{E} \left[\mathbb{E} \left(\mathcal{A} \left(\mathbb{D} \mathcal{B} + \varepsilon \right) \right) \right] = \mathbb{E} \left[\mathcal{B} \right] = \mathbb{E} \left[\mathbb{E} \left(\mathcal{A} \right) \right] = \mathbb{E}$

with respect to a coverfully closen distribution for B (a prior).

BERT by the average visit of A(.)

Next, we have that (*) is equal

 $\mathbb{E}_{S \sim N_d(0, \frac{\sigma^2}{\sigma N})} \mathbb{E}_{\varepsilon \sim N_n(0, 6^n \mathbb{I}_n)} \left[\| (\mathfrak{D}^T \mathfrak{D} + n \lambda \mathbb{I}) - \mathcal{J}^T (\mathfrak{D}_{S+c}) - \mathcal{J}^2 \right]$

Next, we have that

To = (DD + n L Id) DE - n & (DTD + n L Id) / (2)

Because E IL /3 the expression reduces to

$$\mathbb{E}_{\varepsilon_{N}N_{0}(Q_{0}e^{2}\Gamma_{n})}\left[\left\|\left(\hat{\mathcal{Z}}_{1}^{1}+\lambda\Gamma_{d}\right)\frac{\Phi^{T}}{n}\varepsilon\right\|_{2}^{2}\right]+\frac{\mathbb{E}_{N_{0}N_{0}(Q_{0}e^{2}\Gamma_{d})}\left[\left\|\lambda\left(\hat{\mathcal{Z}}_{1}^{2}+\lambda\Gamma_{d}\right)\boldsymbol{\beta}\right\|_{2}^{2}\right]$$

T₁ + T₂

$$T_{i} = \frac{6^{2}}{n} \text{ Tr} \left(\frac{2}{n} \right)$$

$$T_{i} = \frac{G^{2}}{n} T_{i} \left(\frac{2}{2} + \frac{1}{2} \right)$$

$$T_{i} = \frac{G^{2}}{n} \operatorname{Tr}\left(\left(21 + \frac{1}{2}\operatorname{Id}\right)^{2} 2^{2}\right)$$

$$T_{2} = \lambda^{2} E_{\beta} \left[\beta^{T} \left(2 + \lambda T_{d} \right)^{-1} \hat{Z}^{2} \left(2 + \lambda T_{d} \right)^{\beta} \right]$$

$$= \frac{1^{2}6^{2}}{n \times 10^{2}} + r \left(\left(\underbrace{2^{2} + 1^{2}a}\right)^{2} \underbrace{2^{2}}\right)$$

$$T_1 + T_2 = \frac{6^2}{n} \text{ fv} \left(\left(\underbrace{3^2 + \lambda T_d} \right)^{-1} \underbrace{3^2}_{n} \right)$$

Notice that $\operatorname{tr}\left(\left(\widehat{S}_{i}^{2}+\lambda \overline{A}_{i}\right)^{-1}\widehat{S}_{i}^{2}\right)=\frac{\widehat{A}_{i}}{\widehat{A}_{i}}+\widehat{A}_{i}$ where ij is the jth eigenvalue of Si.

This is decreasing in a So

$$\sup_{\lambda} 7.+72 = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{2} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{\lambda \to 0} \left(\frac{2}{n} + \lambda T_{\theta} \right)^{-1} = \frac{6^2}{n} \lim_{$$

$$=\frac{6^2}{9}$$
 tr $\left(\frac{3}{2},\frac{3}{2}\right)$

$$=\frac{G^2}{n}$$

This is the excess rum of 3 OLS

About minmaxity for estimation: let P = {Pa, D= @] be a parametric family of prob. distributions

(a peranetric statistical model). We are interested

For any estimator $\hat{A} = \hat{A} \left(\text{where } \hat{A} = \hat{A} \left(X_1, \dots, X_n \right) \right)$ Let $L(\hat{\theta}, \theta^n)$ be the loss function associated to $\hat{\theta}$ (e.g. $L(\hat{\theta}, \theta^n) = h\hat{\theta} - \theta^n \|^2$).

The risk of D is the function DE DE LOCADITE RODA

int som R(ô,0)

The minimax risk for this problem

over old stimeters

A notival lower bound on the minimax run is the $\mathbb{R} = \mathbb{R} \left[\mathbb{R} \left(\hat{\theta}, \theta \right) \right] = \mathbb{R} \left(\pi \right)$ bydi a procedure attaining that infimum Bayes procedure wit TT. When the Lass function is e.g. quedratic, the Bayes procedure is the patterno mean of if [Th] is a sequence of priors R(Th) - r and of a compresedute s.t. 9up R (0 1 9) = r if the coverate (... the rows of @) ove rounding the risk of OLS B is 62 tr (212) where

(5)

D 1 row of D.

This is also the minimax view.

See Mourtakais paper.

STATISTICAL INFERENCE FOR BE

As before we some a well-specified linear midel and fixed convertes, is.

V = DB + E $f(x) = \int_{0}^{\infty} dx + E$

to estrinate and corry out statistical inference
for B* in fixed dimansions (i.e. d is
fixed)

the OLS consustant?

Assume that $\frac{\hat{3}^1}{n} = \frac{\vec{D}^T\vec{D}}{n} = \frac{\vec{3}^1}{n} \rho \cdot \vec{d}$

thouspoon of its PP By WLLN $\frac{D^{T}E}{n} = \frac{1}{n} \sum_{i=1}^{n} \frac{D_{i}E_{i}}{n} = \frac{P}{n}$ See this \$\Bi\(\varepsilon_i \varepsilon_i \

become the E's are imap.

$$\operatorname{Var} \left[\begin{array}{c} \underline{\mathbf{Q}} & \underline{\mathbf{z}} \\ \underline{\mathbf{n}} \end{array} \right] = \frac{6^2}{n^2} \underbrace{\mathbf{D}} \underbrace{\mathbf{D}} \underbrace{\mathbf{D}}$$

$$= 6^{2} \left(\frac{2}{n} - 2 + 2^{2} \right)$$

IT E P O

√n (B-B) ~ Na (0, 62 5.

is symptotrally normal

$$Var \ \ \, \left[\begin{array}{c} \underline{\Phi} \ \, \xi \\ \underline{\rho} \end{array} \right] = \frac{6^2}{n^2} \ \, \underline{\Phi} \ \, \overline{\theta}$$

$$\begin{array}{c|c} & & & \\ & & &$$

$$\operatorname{Var} \left[\begin{array}{c} \Phi \\ \Sigma \end{array} \right] = \frac{6^2}{N^2} \Phi^{\dagger} \Phi$$

$$\operatorname{Var}\left[\begin{array}{c} \underline{\Phi}^{\mathsf{T}} \underline{\varepsilon} \\ \underline{n} \end{array}\right] = \frac{6^2}{n^2} \underline{\varepsilon}$$

Var
$$\left[\begin{array}{cc} \Phi^{T} \Sigma \\ \hline \end{array}\right]^{T} = \frac{6^{2}}{n^{2}} \Phi^{T} \Phi$$

 $= \frac{61}{6} \frac{31}{6} + \frac{61}{6} \left(\frac{1}{10} - \frac{31}{6} \right) \rightarrow 0$

