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Abstract

We provide a polyhedral description of the conditions for the existence of the maximum likelihood
estimate (MLE) for a hierarchical log-linear model. The MLE exists if and only if the observed
margins lie in the relative interior of the marginal cone. Using this description, we give an algorithm
for determining if the MLE exists. If the tree width is bounded, the algorithm runs in polynomial
time. We also perform a computational study of the case of three random variables under the no
three-factor effect model.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the analysis of contingency tables using log-linear models, the maximum likelihood
estimate (MLE) of the underlying parameters (or equivalently of the expectations of the
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cell counts) plays a fundamental role for computation, assessment of fit, and model inter-
pretation. In particular, the existence of the MLE is crucial for the determination of degrees
of freedom of traditional χ2 large sample approximations (see, for example, Bishop et al.,
1975) and for exact or approximate techniques for computing p-values. If the MLE does
not exist, then the standard procedures and their approximations require alteration.
The characterizations of the conditions for the existence of the MLE developed in the

statistical literature are non-constructive, in the sense that they do not directly lead to a
numerical implementation (see Haberman, 1974, Appendix B). As a result, the possibility
of the nonexistence of the MLE is rarely considered by practitioners and the only available
indication of it is a lack of convergence of the iterative algorithms used to approximate the
MLE.
The problem of nonexistence has long been known to relate to the presence of zero

cell counts in the table (e.g. Fienberg, 1970; Haberman, 1974; Bishop et al., 1975). Zero
counts arise frequently in large sparse tables where the total sample size is small relative
to the number of cells in the table (e.g. Koehler, 1986). Thus for small contingency tables
with a large sample size, the nonexistence of the MLE is a relatively infrequent problem.
This is because for small contingency tables (nearly) all of the cell entries in the table
will be positive, which, as we will see, guarantees the existence of the MLE. However, the
nonexistence of theMLE is a potentially common problem in applications in the biological,
medical, and social sciences, where the contingency tables which arise are large and sparse.
Unfortunately, in many such applications researchers “collapse” large sparse tables to form
one of smaller dimension and/or size. As Bishop et al. (1975) and Lauritzen (1996) make
clear, such collapsing can lead to erroneous statistical inferences about associations among
the variables displayed in the table. Here we explore collapsing as a technical device to
illustrate the combinatorial complexity that arises in studying the nonexistence of theMLE.
The goals of this paper are two-fold. First, we show that the nonexistence of the MLE is

equivalent to the margins of the observed contingency table lying on a facet of the marginal
cone of the underlying hierarchical log-linearmodel. This polyhedral reinterpretation of the
problem immediately leads to easily implementable algorithms for determining whether or
not the MLE exists given an observed contingency table. We discuss these algorithms in
Section 3. From the practical standpoint, this characterization gives a simple way to check
whether or not the MLE exists before using numerical methods to estimate the MLE. In
the event the MLE does not exist, identifying those zero cell counts that cause the non-
existence problem requires generalizations of the basic algorithm we describe.
The second goal of this paper is to alert the mathematical reader to a rich source

of combinatorial problems that arise from statistical applications. The polyhedral
cones we are concerned with have received attention in various guises (e.g., the
“correlation polytope” in Deza and Laurent (1997) and the “marginal polytope” in
Jordan and Wainwright (2003)). Thus our particular problem of deciding if a point in this
cone is on a facet is a new variation on an old theme. Given recent computational advances,
this also suggests the problem of developing efficient algorithms for computing the convex
hulls of highly symmetric polyhedra. We discuss these issues in Section 4.
The outline for this paper is as follows. In Section 2 we define hierarchical models and

the MLE, and we show that the MLE exists if and only if the observed margins belong to
the relative interior of a polyhedron. In Section 3 we use this fact to describe an algorithm
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for checking the existence of the MLE. The algorithm uses linear programming and runs
in polynomial time if the tree width of the model is bounded. Section 4 focuses on the
study of the complexity of the problem for three-way tables. In particular, we consider the
collapsing operation as a combinatorial tool for studying the nonexistence of the MLE.

2. Hierarchical models and the MLE

In this section, we introduce hierarchical models and the MLE and we show that
the MLE exists if and only if certain polyhedral conditions are satisfied. For this and
the remaining sections, we assume the reader is familiar with the basics of polyhedral
geometry. Two standard references are Ziegler (1998) for basics on polyhedra and Schrijver
(1998) for algorithmic aspects including linear programming. Our polyhedral condition is
a reformulation of a result of Haberman (1974).
Contingency tables are collections of non-negative integers arising from cross-

classifying a set of objects into categories or cells indexed by a set of labels d
corresponding to variables of interest (see Bishop et al., 1975; Lauritzen, 1996). More
precisely, we get a K -way contingency table n by taking a sample of independent
and identically distributed observations on a vector of K discrete random variables
(X1, . . . , XK ). The j th random variable X j takes values in the set [d j ] := {1, 2 . . . , d j }.
We call the various states of the random variables levels. Let d = ⊗K

j=1[d j ]. Thus each
i ∈ d identifies the number n(i).
Although the entries in the table n are integer valued, we treat n as an element of Rd ,

the space of all real valued functions on the multi-index set d endowed with the usual inner
product xT y = ∑

i∈d x(i)y(i) for x, y ∈ Rd . For the remainder of the paper, we assume
that the index set d is linearized in some fashion, so that we can represent the table n as a
vector.
The statistical analysis of tables using log-linear models focuses on inference about

parameters in a model or equivalently on inferences about the mean vectorm = E(n) of the
observed table under the assumption thatm > 0, so that µ = logm is well defined. There
are interesting extensions of the ideas in this paper to situations where we know a priori
that some entries ofm are zero (e.g. Bishop et al., 1975; Haberman, 1974; Fienberg, 1970).
Log-linear models arise from assuming µ ∈ M, where M is a p-dimensional linear

subspaceM ⊆ Rd such that 1d ∈ M. A common way of obtainingM is by specifying
a hierarchical model. A hierarchical model is determined by a simplicial complex∆ on K
vertices from which a 0-1 matrix A∆ is constructed whose rows spanM in the following
way. Let {F1, . . . ,F f } be the facets of∆ and, for eachFs and i ∈ d , let dFs = ⊗

j∈Fs [d j ]
and iFs be the restriction of i to dFs . Let FFs be the set of functions on d that depends on
i only through iFs . That is,

FFs := {x ∈ Rd | x(i) = x( j) for all i, j with iFs = jFs }.

Then the linear subspace M corresponding to the hierarchical log-linear model ∆ takes
the form

M∆ =
∑

Fs∈∆

FFs .
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Let A∆ be a 0-1 matrix having dimension v × |d|, where v = ∑
s
∏

j∈Fs d j and |d| is
the cardinality of this index set. Each row of A∆ is indexed by the pair (Fs, iFs ) and is
equal to the indicator function χ(iFs ), a vector in Rd which is 1 on coordinates iF f and 0
otherwise. Then the rows of A∆ spanM∆, so a hierarchical model can be identified by a
collection of K levels d = (d1, . . . , dK ) and a simplicial complex∆ on K nodes.
Data displayed in the form of contingency tables arise from various sampling schemes

involving the observations on the random variables (cf. Bishop et al., 1975; Haberman,
1974). The results that follow are valid for the following three schemes:

Poisson Sampling. The total number n = |n| of counts is random, where, for a non-
negative vector x, |x| = ∑

i x(i), and the counts are in fact independent Poisson
random variables.

Multinomial sampling. The total number n = |n| of counts is fixed by design.
Product Multinomial sampling. Let B ⊂ {1, . . . , n} and dB = ⊗

j∈B d j , as above. For
each b ∈ B, the number of counts |n(ib)| is fixed by design. Here, we assume, as
is commonly done in the statistical literature, that B is always a face of∆.

Given a table n on the fixed set of levels d = (d1, . . . , dK ) and a simplicial complex∆,
the MLE of µ is the point µ̂ ∈ M∆ such that m̂ ≡ exp(µ̂) best approximates the unknown
meanm = E(n) in the sense that it maximizes the probability of observing the actual table
n, i.e., joint distribution of the counts n as a function of the mean vectorm. This probability
is also known as the likelihood function when we express it as a function of the parameters
m given the data n. The log-likelihood function "(m) is the logarithm of the likelihood
function.
For a given observed table n, we can write the log-likelihood as

"(m) = log Pr (n(i) | m(i), i ∈ d) =
∑

i∈d
n(i) logm(i) −

∑

i∈d
m(i) + Cn,

where Cn is the logarithm of the normalization constant and depends only on n and the
particular sampling scheme. For a hierarchical model ∆, we can parametrize the log-
likelihood as

"(µ) = (P∆n)Tµ −
∑

i∈d
exp(µ(i)) + Cn,

where P∆ is the projection matrix ontoM∆.
The maximum likelihood estimate, or MLE, of µ is the vector µ̂ ∈ M∆ such that

"(µ̂) = sup
µ∈M∆

"(µ).

Definition 1. We say that the MLE does not exist or is undefined if the supremum is not
attained by a finite vector µ̂.

The log-likelihood depends on the observed table n only through P∆n or, equivalently,
since the rows of A∆ spanM∆, the vector t = A∆n. Therefore, in order to establish the
existence and find the numerical value of the MLE, we need only observe t, the vector of
margins of the observed table; these are known as the minimal sufficient statistics for the
model.
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The requirement that the MLE must be finite derives from the assumption of positivity
of the coordinates of the mean vector m and the issue of existence translates into the
problem of existence of a strictly positive vector m maximizing "(m). This means that
there are no cells that are known to have zero probability a priori, i.e., no structural zeros.
Haberman (1974) and Lauritzen (1996) considered extended classes of log-linearmodels in
which the MLE is the limit of points inM∆ realizing the supremum of the log-likelihood
function. This would require some of the coordinates of the estimated mean vector to be
zero. The present work is concerned only with the conditions guaranteeing the existence
of a strictly positive solution.
Surprisingly, the study of the conditions of existence of the MLE has received only

limited attention in the statistical literature. Essentially all available results are variations
of the following theorem due to Haberman (1974):

Theorem 2. Under any of the three sampling schemes described above, a necessary and
sufficient condition for the existence of the MLE is that there exists z ∈ ker(A∆) such that
n+ z > 0.

For a strengthening of Theorem 2 see Geiger et al. (2002). For a given log-linear model
∆, define the marginal cone P∆ = C(A∆) to be the convex hull of the set of margins
t, where, for any matrix A, C(A) indicates the cone generated by its columns. Let
relint(P∆) denote the relative interior of P∆, defined as the interior of P∆ with respect
to its embedding into the smallest linear space containing it. Then, the following corollary
provides a polyhedral reinterpretation of the conditions for the existence of the MLE:

Corollary 3. Under any of the three sampling schemes, the MLE for the mean vector m
exists if and only if the margins t = A∆n belong to relint (P∆).

Proof. A vector of margins t lies in the relative interior of the polyhedral cone P∆ if and
only if there is a real valued table x with strictly positive cells such that Ax = t. Theorem 2
then implies that the MLE exists if and only if t ∈ relint(P∆). !

3. Determining the existence of the MLE

In this section, we describe algorithms for determining whether the MLE for a given
table n and model ∆ exists. To make the mathematical statements in this section concise,
we assume that A∆ contains extra rows determined by the faces of ∆ in addition to those
rows determined by the facets of ∆. Since this over-parameterization does not change
the row span M∆, the matrix A∆ describes the same hierarchical log-linear model. To
implement the algorithms we describe, one can relax this condition on A∆.
By Corollary 3, the MLE does not exist if and only if the vector of observed margins

t = A∆n lies on a facet of P∆. Hence, we want to show that there is a nontrivial vector c in
the dual cone of P∆ which attains its maximum value at t but does not attain its maximum
value at some other point of P∆. The existence of such a c implies that t lies on a facet of
P∆. However, this can be decided by determining if the polyhedral cone

F∆
n = {c | cT A∆ ≤ 1T · cT t} (1)

contains only those vectors orthogonal to the linear hull of P∆.
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Note that this linear system involves exponentially many inequalities in the number
of random variables K . We show, however, that if the model ∆ satisfies certain nice
complexity properties, the linear system (1) has an equivalent formulation using only
polynomially many inequalities. Since we can solve linear programs in polynomial time
(e.g., Schrijver, 1998), this implies the following result:

Theorem 4. There is an algorithm for deciding the triviality of the linear program (1)
which runs in polynomial time in the size of the input data and the number of levels of each
random variable whenever the simplicial complex∆ has bounded tree width.

A precise formulation appears in Theorem 9 where the exact complexity bounds are
stated. First, we define all the objects in question.

Definition 5. A simplicial complex ∆ is reducible if there is a decomposition of ∆ into
(∆1, S,∆2) such that

(1) ∆1 ∪ ∆2 = ∆,
(2) |∆1| ∩ |∆2| = S, and
(3) S ∈ ∆1 and S ∈ ∆2.

Here |∆i | denotes the underlying set of ∆i . A simplicial complex is called decomposable
or chordal if it is reducible and each of∆1 and∆2 are either decomposable or a simplex.

Definition 6. The tree width T (∆) of a simplicial complex ∆ is one less than the size of
the maximal face in the smallest decomposable complex that contains∆. That is,

T (∆) = min
∆⊂Γ

max
C∈Γ

|C| − 1

where the minimum runs over all decomposable Γ with all faces of ∆ in Γ . A
decomposable simplicial complex Γ that attains the minimum is called a chordal
triangulation of∆.

For instance, the tree width of the K -cycle,∆ = [12][23] · · · [(K−1)K ][1K ], is always
2 since a K -cycle does not have tree width 1 (i.e., it is not a tree), and the simplicial com-
plex Γ = [123][134] · · · [1(K − 1)K ] is a decomposable complex that triangulates the K -
cycle.We study the K -cycle in more detail in Example 10 below. Note that the tree width of
a simplicial complex∆ only depends on the structure of its underlying graph because every
decomposable simplicial complex is determined by its 1-skeleton. Graphs with bounded
tree width are natural families to consider when one wishes to bound the complexity of al-
gorithms related to the underlying graphs. See, for example, Jordan and Wainwright (2003)
for applications to directed and undirected graphical models.
The proof of Theorem 4 follows from a series of results relating the system of linear

inequalities to systems of inequalities for chordal triangulations. Our goal is to produce a
polyhedral cone whose triviality is equivalent to the triviality of the cone (1) but whose
description involves fewer linear equations and inequalities.

Lemma 7. Suppose that Γ is a model with ∆ ⊆ Γ . Then

F∆
n = π(FΓ

n ∩ {c | cF = 0 with F ∈ Γ \ ∆}),
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where π is the coordinate projection of FΓ
n into the ambient space of F∆

n . The notation cF
denotes the part of the vector c which is naturally labeled by the face F ∈ Γ .

Proof. By definition. !
Suppose that ∆ is reducible, with decomposition (∆1, S,∆2). From the vector n we

can compute the margins with respect to |∆1| and |∆2|, which we denote by n1 and n2.
Lemma 8. Suppose that ∆ is reducible, with decomposition (∆1, S,∆2) and let n be a
table. Then

F∆
n = ι1(F∆1

n1 ) + ι2(F∆2
n2 )

where the “+” indicates the Minkowski addition of the two cones and ι1, ι2 are the natural
embeddings of F∆1

n1 and F∆2
n2 into the ambient space of F∆

n .

Proof. Modulo the lineality space of F∆
n , the extreme rays of F∆

n are precisely the facet
defining inequalities of P∆ on which t lies. To show the claim, it suffices to show that
every facet of P∆ comes from a facet of P∆1 or P∆2 , in the sense that dual(P∆) =
ι1(dual(P∆1)) + ι2(dual(P∆2)). But this amounts to showing that we can decide the
consistency of margins for a reducible model by checking consistency for both component
models, ∆1 and ∆2. Now if the margins t1 and t2 are consistent with respect to ∆1 and
∆2 respectively, there are tables n1 and n2 such that A∆1n1 = t1 and A∆2n2 = t2. Then
n1 and n2 are margins of the decomposable model ∆∗ = [|∆1|][|∆2|] which satisfy the
linear consistency relation that their S = |∆1| ∩ |∆2| margins agree. Thus, t are consistent
∆ marginals by Lauritzen (1996). This completes the proof. !
The description of F∆

n as a Minkowski sum in Lemma 8 does not give a description of
F∆
n that is short in terms of having few facets. The key to such a short description is to
recall that theMinkowski sum of two polyhedra P+Q is the image of P×Q under the map
π that sends (x, y) to x + y. In particular, various properties of P + Q can be determined
by studying properties of P × Q. If P has m facets and Q has n facets, then P × Q has
only m + n facets. This implies that if P and Q have short descriptions in terms of few
facets, then so does P × Q. Lastly, linear conditions on P + Q lift to linear conditions on
P × Q. Thus we can decide if (P + Q) ∩ L is empty by considering (P × Q) ∩ L ′, where
L ′ = π−1(L). If we accumulate all of these ideas, together with the preceding lemmas, we
get the following explicit version of Theorem 4.

Theorem 9. Let∆ be a simplicial complex and Γ a chordal triangulation of∆, with facets
Γ1, . . . ,Γs . Denote by nt the Γt margin of n. Then the polyhedron F∆

n is equal to the
orthogonal complement of the linear hull of P∆ if and only if the polyhedron

(FΓ1
n1 × · · · × FΓs

ns )
⋂

{
(c1, . . . , cs)

∣∣∣∣∣

s∑

t=1
cFt = 0 for all F ∈ Γ \ ∆

}
(2)

is a linear space. Furthermore, the linear description of (2) requires O(DT (∆)+1s)
equations and inequalities in an ambient space of dimension O(DT (∆)+1s), where D =
maxi di . If the tree width of ∆ is bounded, the complexity of the resulting linear program
is polynomial in K and D and the bit complexity of nt .
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Proof. This is straightforward once we unravel all of the definitions. The main point is
that (2) projects, under the “Minkowski summation” map, onto F∆

n . This is because the set
on the left of the ∩ projects onto FΓ

n and the set on the right of the ∩ is the pullback of the
linear conditions which are forced in Lemma 7.
Now we will prove the statement about the complexity of the resulting linear program.

Each of the sets FΓt
nt has a description in terms of at most O(D|Γt |) equations and

inequalities in O(D|Γt |) variables since it is the normal cone to a point on a simplex in
an ambient space of dimension O(D|Γt |). Taking the conjunction of all these equations
and inequalities yields O(DT (∆)+1s) equations and inequalities in O(DT (∆)+1s) variables
which describe the set on the left of the ∩ in (2). Now, each facet F ∈ Γ \ ∆ contributes
O(D|F |) equations. For each r there are O

((T (∆)+1
r

)
s
)
facets F ∈ Γ \ ∆ with |F | = r so

this yields a total of

T (∆)+1∑

r=1
O

((
T (∆) + 1

r

)
Dr s

)
= O((D + 1)T (∆+1)s) = O(DT (∆)+1s)

equations on the right-hand side of the ∩ in (2). Thus the total number of equations and
inequalities needed to describe (2) is also O(DT (∆)+1s). If the tree width of∆ is bounded
this expression is polynomial in D and K since s ≤ K for a decomposable complex Γ . !

Example 10 (5-cycle). Now we will describe our construction in the special case where
K = 5 and ∆ is the 5-cycle. Let ∆ = [12][23][34][45][15] and let Γ = [123][134][145]
be a chordal triangulation. Clearly, ∆ has tree width 2 as we previously stated. Now we
construct the system of inequalities and equations in Theorem 9 for∆ with respect to Γ .
The three facets of Γ are Γ1 = [123], Γ2 = [134], and Γ3 = [145], from which the

matrices AΓt are computed. We determine each of the cones F
Γt
nt by the polynomially

many inequalities given by

FΓt
nt = {ct | cTt AΓt ≤ 1T · cTt AΓtnt }. (3)

For each t , the vector ct divides into blocks, one for each face F of Γt . Thus, when
Γt1 and Γt2 have a nontrivial overlap, there will be some blocks, ct1 and ct2 , labeled by the
same faces. For instance, Γ1 and Γ2 intersect in the face [13].
The conjunction of all the inequalities in (3) gives all the inequalities from the

description in (2). To deduce the equations, we must set to zero all of the ct blocks
corresponding to faces of Γ that are not in ∆ after the projection. This amounts to adding
the five sets of equations:

c[123]1 = 0, c[134]2 = 0, c[145]3 = 0,

c[13]1 + c[13]2 = 0, and c[14]2 + c[14]3 = 0.

All told, we have a system of O(D3) inequalities and equations in O(D3) decision
variables, where D = max{d1, . . . , d5}, to decide if the cone is a linear space (as
opposed to O(D5) in O(D2) variables in the standard representation). For a general K -
cycle, Theorem 9 produces a system of O(D3K ) inequalities and equations in O(D3K )

variables, instead of O(DK ) inequalities and equations in O(D2K ) variables.
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4. Three-way tables

4.1. Collapsing

In this section, we let ∆ be the simplicial complex [12][13][23] on three random
variables with levels p, q, r , corresponding to the log-linear model of no three-factor
effect (also referred to as no second-order interaction). This is the hierarchical log-linear
model on the fewest number of random variables where the facet structure of the marginal
cone is not completely understood. From a practical standpoint, the linear programming
based algorithm from Section 3 runs in polynomial time to determine whether or not the
MLE exists for a given table under the no three-factor effect model. However, having an
understanding of the facet structure of the marginal cone provides insight into the different
possible ways that the MLE might not exist. Even in this small hierarchical model, the
marginal cone is quite complicated.
Denote by P p,q,r

∆ = P∆ the marginal cone for this model. We now place special
emphasis on the levels and we seek to understand the combinatorial structure of the set
of facets of P p,q,r

∆ . Our main tool is collapsing the p × q × r table to a table with fewer
levels through the combination of levels.
An elementary collapsing of Pd∆ is a linear transformation π : Pd∆ → Pd′

∆ which is
obtained by replacing some random variable X j and a set S of states of X j by a new
random variable X ′

j with d j − |S| + 1 states where all the states in S are mapped to a
single state. A collapsing is any linear map π : Pd∆ → Pd′

∆ obtained by a sequence of
elementary collapsings. Collapsing occurs naturally in applications where one wishes to
make coarser distinctions on the states of random variables. For instance, a random variable
which represents the height of individuals might be collapsed to the binary random variable
whose two states are “tall” and “short”.
Since a collapsing π maps Pd∆ onto Pd′

∆ , for any facet F
′ of Pd′

∆ , F = π−1(F ′) is a face
of Pd∆. If F is a facet of P

d
∆, we say that F is obtained by collapsing the d1 × · · · × dn

table to a d ′
1 × · · · × d ′

n table. As an example of this construction, we use collapsing to
derive exponential lower bounds on the number of facets of the marginal cone of the no
three-factor effect model.

Proposition 11. The number of facets of P p,q,r
∆ is at least

1
2
(2p − 2)(2q − 2)(2r − 2) + pq + qr + pr.

Proof. Up to symmetry, the facets of a 2× 2× 2 table are given by the conditions:
0 ∗
0 ∗ | ∗ ∗∗ ∗ or 0 ∗∗ ∗ | ∗ ∗

∗ 0

The 0/∗ notation means that the facet is given by the conditions that the “0” entries in
the table are zero and the ∗ entries are non-negative. That is, the facet described by a 0/∗
pattern is the cone over the extreme rays of the marginal cone which are marked with a ∗.
The first condition says that one entry in one of the margins is zero. There are

pq + qr + pr margins for a p × q × r table. For the second condition, any p × q × r
table can be collapsed to a 2 × 2 × 2 table in (2p−1 − 1)(2q−1 − 1)(2r−1 − 1) ways.
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Each of these collapsings gives a distinct face of P p,q,r
∆ of the second type in four different

ways. We now show that this face is in fact a facet. For this it suffices that the dimension of
the linear span of the extreme rays of P p,q,r

∆ that are contained in this face has dimension
one less than the dimension of the marginal cone. This in turn will be implied by showing
that the linear span of these extreme rays together with any other extreme ray not in the
face contains the entire marginal cone P p,q,r

∆ . Without loss of generality, by applying the
natural symmetry of this problem, it follows that the extreme rays not contained in the face
F are those that have indices (i.e., positions in the p × q × r array) in the set

I = {(i1, i2, i3) | i1 ≤ k1, i2 ≤ k2, i3 ≤ k3}
∪ {(i1, i2, i3) | i1 > k1, i2 > k2, i3 > k3},

for some fixed values k1, k2, and k3. We denote the extreme ray indexed by (i1, i2, i3) by
ei1i2 i3 . Without loss of generality, we may take e111 to be the extreme ray not contained
in F , by again applying the symmetry of the cone. Then for any index ( j1, j2, j3) with
ji > ki for i = 1, 2, 3, we have the relation

e111 + e1 j2 j3 + e j11 j3 + e j1 j21 − e11 j3 − e1 j21 − e j111 = e j1 j2 j3 .

Since all the extreme rays on the left-hand side are contained in F ∪ {e111}, this implies
that e j1 j2 j3 is contained in the linear span of F ∪ {e111}. By symmetry, all the extreme rays
indexed by elements of I are contained in the linear span of F ∪{e111}. This completes the
proof that F is a facet. !
The cones P p,q,r

∆ appear in other guises in the mathematical literature. For
example, Vlach (1986) studied conditions for the non-emptiness of the three-dimensional
transportation polytopes. A three-dimensional transportation polytope is a set of tables

Pt = {x ∈ Rd
≥0 | Ap,q,r

∆ x = t},
which is nonempty if and only if t ∈ P p,q,r

∆ . Hence, his results can be reinterpreted in our
language. One such result is:

Proposition 12. All facets of P2,q,r
∆ are obtained by collapsing to P2,2,2∆ .

Notice that Propositions 11 and 12 combine to show that there are exactly (2q −2)(2r −
2) + 2(q + r) + qr facets of P2,q,r

∆ .

4.2. Computations

The polyhedron P p,q,r
∆ is given by the positive hull of the columns of A∆ as a cone

with pqr extreme rays in Rpq+pr+qr . Some of the rows of A∆ are redundant: the cone is
pq+ pr+qr− p−q−r+1dimensional. It is generally a difficult computational problem to
take convex/positive hulls in a high-dimensional space. The best algorithms for computing
the convex hull of n points in Rd take O(n.d/2/) time. Using the software polymake by
Gawrilow and Joswig (2000) we have computed the facets for a number of examples.
The group Sp × Sq × Sr provides a natural action on the set of facets of Pp,q,r given by

permuting the levels of each random variable. After computing all the facets, we computed
orbits under this action, which gives a better picture of the set of facets. The results of our
computations are displayed in Table 1.
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Table 1
Summary of computations. The column “Orbits” counts the number of Sp × Sq × Sr orbits of facet types. The
column “Collapsing” shows the smallest table such that all facets of P p,q,r∆ are obtained by collapsing to it

p q r Dim Extreme rays Facets Orbits Collapsing
2 2 2 7 8 16 4 2 2 2
2 2 3 10 12 28 4 2 2 2
2 2 4 13 16 48 5 2 2 2
2 3 3 14 18 57 5 2 2 2
2 3 4 18 24 110 6 2 2 2
3 3 3 19 27 207 8 3 3 3
3 3 4 24 36 717 10 3 3 3
3 3 5 29 45 2379 13 3 3 3
3 3 6 34 54 7641 17 3 3 3
3 3 7 39 63 23991 20 3 3 3
3 4 4 30 48 4948 16 3 4 4
3 4 5 36 60 29387 24 3 4 4
3 4 6 42 72 153858 35 3 4 4
3 5 5 43 75 306955 42 3 5 5
4 4 4 37 64 113740 39 4 4 4

It is an interesting computational problem to use this very large symmetry group to
better compute the convex hull. The set of symmetry classes of facets is small, and many
of these classes come from collapsing from a smaller table. Thus many of the facets are
known “for free” and this information should be used to compute the other facets. Also,
the symmetry group is transitive on the extreme rays of the cone, so in principle one could
hope to compute all the facets incident to a single extreme ray, and then use symmetry to
recover the entire cone.
Given Proposition 12, a natural conjecture is that all facets are obtained by collapsing to

binary tables. Our computations show that the situation is remarkably more complicated,
and not all facets of P p,q,r

∆ for general p, q, r are obtained by collapsing.

Example 13 (A Non-collapsible Facet). The following is a facet of P4,4,4∆ that does not
arise from collapsing to any smaller table.

0 0 0 ∗ ∗ 0 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 ∗ 0
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ 0 0 0 ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ 0 0 0 ∗ ∗ 0 0 ∗ ∗ ∗ 0

This example was found after examining the 39 symmetry classes of facets of P4,4,4∆ .

Based on our computations (see Table 1), we are led to the following conjecture.

Conjecture 14. Suppose that p ≤ q ≤ r . Then all facets of P p,q,r
∆ are obtained by

collapsing from facets of P p,q,q
∆ .

In general, it is true that if we fix p and q , there exists an r such that for all r ′ ≥ r ,
all facets of P p,q,r ′

∆ are obtained by collapsing from facets of P p,q,r
∆ . This follows by

noting that, in a facet not obtained by collapsing, no two slices can have the same 0/∗
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pattern. Since for fixed p and q there are only finitely many patterns, the statement follows.
Conjecture 14 merely asserts that the minimal such r is q . A natural related question is to
ask how this finite complexity property of the facial structure relates to the finite complexity
properties of Markov bases proved in Santos and Sturmfels (2003).

5. Summary

We have given a polyhedral description of the statistical problem of determining the
existence or nonexistence of the maximum likelihood estimate for a hierarchical log-
linear model for a multi-way contingency table. The computational implementation of this
description in principle allows statisticians to explore for the first time the implication of
patterns of zeros in large sparse tables that lead to nonexistence and thus to recast the
estimation problem in terms of extended log-linear models for a corresponding incomplete
contingency table (cf. Haberman, 1974). There are further ties to this extended estimation
problem inherent in the algebraic geometry description of log-linear models in terms of
Gröbner bases given by Geiger et al. (2002).
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