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Abstract

The common view of the history of contingency tables is that it begins in 1900
with the work of Pearson and Yule, but it extends back at least into the 19th
century. Moreover it remains an active area of research today. In this paper we
give an overview of this history focussing on the development of log-linear models
and their estimation via the method of maximum likelihood. S. N. Roy played a
crucial role in this development with two papers co-authored with his students
S. K. Mitra and Marvin Kastenbaum, at roughly the mid-point temporally in this
development. Then we describe a problem that eluded Roy and his students, that of
the implications of sampling zeros for the existence of maximum likelihood estimates
for log-linear models. Understanding the problem of non-existence is crucial to the
analysis of large sparse contingency tables. We introduce some relevant results from
the application of algebraic geometry to the study of this statistical problem.
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1 Introduction

Most papers and statistical textbooks on categorical data analysis trace the
history back to the work of Karl Pearson and George Udny Yule at the turn
of the last century. But as Stigler (2002) notes, there is an early history of
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contingency tables dating to at least the 19th century of Quetelet (1849) on
measuring association and hypergeometric analysis for the 2 × 2 table by
Bienaymé (see e.g., Heyde and Seneta, 1977), and the introduction by Francis
Galton (1892) of expected values of the form

Expected Count(i, j) =
(Row Marginal Total i)× (Column Marginal Total j)

Grand Total
,

(1)
as a baseline for measuring association, a formula that would later play a
crucial role in chi-square tests for independence. Categorical data analysis
remains an active area of research today and thus our history covers activities
that span three centuries, the nineteenth, the twentieth, and the twenty-first,
as is suggested by the title of this article.

The literature on categorical data analysis is now vast and there are many
different strands involving alternative models and methods. Our focus here
is largely on the development of log-linear models, maximum likelihood esti-
mation, and the use of related chi-square tests of goodness of fit. In the next
section of this paper we give an overview of the main part of this history be-
ginning with the work of Pearson and Yule and running up to the present. S.
N. Roy played a crucial role in this development with two papers co-authored
with his students S. K. Mitra and Marvin Kastenbaum, at roughly the mid-
point temporally in this development. We explain the importance of Roy’s
contributions and how they influenced the development of the modern theory
of log-linear models. Then in Section 3, we turn our attention to a problem
whose full solution eluded statisticians beginning with the work of Bartlett
(1935) until this past year, namely maximum likelihood estimation in the
presence of sampling zeros. In Section 4 and 5 we illustrate, largely through
examples, the nature and implication of the sampling zeros problem and we
introduce the results that have begun to emerge from new tools in algebraic
geometry applied to statistics, an area recently dubbed as algebraic statistics

by Pistone et al. (2000).

2 Historical Development

As we mentioned at the outset, the history of categorical data analysis extends
back well into the 19th century. Here we pick up the history at the beginning
of the 20th century, focusing largely on those contributions that frame the
development of log-linear models and maximum likelihood estimation. We do
this in five parts: (1) Pearson-Yule through Neyman (1900-1950), (2) S. N.
Roy’s contributions, (3) Emergence of log-linear models in the 1960s, (4) The
modern log-linear model era (1970s through present), (5) Other noteworthy
categorical data models and methods. Agresti (2002) gives a complementary
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historical overview.

2.1 Contingency Tables, Chi-Square, and Early Estimation Methods

The term contingency, used in connection with tables of cross-classified cat-
egorical data, seems to have originated with Karl Pearson (1900) who, for
an s × t table, defined contingency to be any measure of the total deviation
from “independent probability.” The term is now used to refer to the table
of counts itself. Pearson (1900) laid the groundwork for his approach to con-
tingency tables when he developed his chi-square test for comparing observed
and expected (theoretical) frequencies:

X2 =
�

i,j

(Observed Count(i, j)− Expected Count(i, j))2

Expected Count(i, j)
. (2)

Yet Pearson preferred to view contingency tables involving the cross-classification
of two or more polytomies as arising from a partition of a set of multivari-
ate, normal data, with an underlying continuum for each polytomy. This view
led Pearson (1904) to develop his tetrachoric correlation coefficient for 2 × 2
tables, and this work in turn spawned an extensive literature. The most seri-
ous problems with Pearson’s approach were (a) the complicated infinite series
linking the tetrachoric correlation coefficient with the frequencies in a 2 × 2
table, and (b) his insistence that it always made sense to assume an underlying
continuum, even when the dichotomy of interest was dead–alive or employed–
unemployed, and that it was reasonable to assume that the probability distri-
bution over such a continuum was normal. In contradistinction, Yule (1900)
chose to view the categories of a cross-classification as fixed, and he set out to
consider the structural relationship among the discrete variables represented
by the cross-classification, via various functions of the cross-product ratios.
Especially impressive in this, Yule’s first paper on the topic, is his notational
structure for n attributes or 2n tables, and his attention to the concept of
partial and joint association of dichotomous variables.

The debate between Pearson and Yule over whose approach was more appro-
priate for contingency-table analysis raged for many years (see e.g., Pearson
and Heron, 1913), and the acrimony it engendered was exceeded only by that
associated with Pearson’s dispute with R. A. Fisher over the adjustment in
the degrees of freedom (d.f.) for the chi-square test of independence associ-
ated with a s × t table. In this latter case, Pearson, who argued that there
should be no adjustment, was simply incorrect. As Fisher (1922) first noted,
d.f. = (s − 1)(t − 1). In arguing for a correction or adjusted degrees of free-
dom to account for the estimation of the parameters associated with the row
and column probabilities, Fisher built the basis for the asymptotic theory of
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goodness of fit and model selection as we came to know it decades later. In
addition, he related the estimation procedure explicitly with the characteriza-
tion of structural association among categorical variables in terms of functions
of odds ratios proposed by Yule (1900) for the 2n table.

Bartlett (1935) introduced the first instance of a methodology for computing
the maximum likelihood estimates (MLEs) for contingency tables. The author
considered the case of what at the time would be called “complex contingency
tables,” namely the 2 × 2 × 2 table displayed in Figure 1 for testing second
order interactions. Bartlett showed that, in order to obtain the MLE under the
model with no-second-order interaction, one needs to solve a cubic equation to
determine a constant which then must be added and subtracted to the table
cells in an appropriate order. Norton (1945) extended Bartlett’s results to the
case of 2× 2× t tables.

Fig. 1. Bartlett’s representation of a 2× 2× 2 table (Bartlett, 1935, page 248).

Deming and Stephan (1940) proposed the method of iterative proportional
fitting (IPF) for estimating the cell values in a contingency table subject to
constraints coming from “known” marginal totals, e.g., from a population
data set. The estimates were supposed to minimize a least squares criterion
and were not related to statistical models of the sort usually associated with
contingency tables. The methodology became known as “raking” and found
widespread application in sampling, especially at the U.S. Census Bureau and
other national statistical offices.

Another noteworthy development from the 1930s was the likelihood ratio test,
proposed by Wilks (1935) as an alternative to Pearson’s chi-square statistic:

G2 = 2
�

i,j

Observed Count(i, j) log

�
Observed Count(i, j)

Expected Count(i, j)

�

, (3)

with the same asymptotic distribution under the null hypothesis of indepen-
dence of row and column variables. Neyman (1949) added to the array of
possible chi-square tests, setting the stage for the work of Roy and his stu-
dents.
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2.2 S. N. Roy’s Contributions

S. N. Roy came to categorical data analysis from multivariate analysis more
broadly and his principal contributions were in collaboration with two Ph.D.
students at the University of North Carolina during the mid-1950s, S. K. Mitra
and Marvin Kastenbaum. These results were also described as a chapter in
Roy (1957).

In the first of these papers, Roy and Mitra (1956) began by making a clear
distinction between response variables (‘variates’ in their terminology) and
explanatory variables (‘way of classification’), with the latter either being fixed
by design or conditioned upon. They described the possible designs and models
for two-way and three-way contingency tables and discussed how these are tied
together through conditioning arguments, e.g. the model of homogeneity of
proportions in a two-way table consisting of one response and one explanatory
variable has a likelihood function that is derivable through conditioning from
the model of independence for a pair of response variables. Then they derived
asymptotic chi-square tests for these different situations, using the union-
intersection principle Roy had developed in his earlier work on multivariate
analysis, and they showed that the “equivalent” hypotheses/designs have the
same maximum likelihood estimates and chi-square goodness-of-fit tests.

In the second paper, Roy and Kastenbaum (1956) filled in a major gap in
the framework of Roy and Mitra (1956). They derived a formal mechanism
for testing the hypothesis of no interaction in a 3-way table by offering new,
“physically meaningful,” multiplicative functional representations of cell prob-
abilities which they then used for computing the MLE via Lagrange multipli-
ers. Like Bartlett and Norton before them, Roy and Kastenbaum did not
concern themselves with the possibility that some of the MLEs of the cell
counts could be negative. Nonetheless, they implicitly noted the role played
by “pivotal subscripts,” taking values 0, +1 and −1, which are used to add
or subtract certain quantities to the observed cell counts, in order to compute
Pearson’s chi-square statistic. As Birch (1963) would later point out, these
results possess some undesirable properties, namely the estimates are not im-
plicit functions of the frequencies and thus they are difficult to compute. Roy
and Kastenbaum (1956) concluded by suggesting how their models generalize
for higher-way tables.

Why did Roy and Kastenbaum not concern themselves with the existence of
the MLE? While we can only speculate on the matter, the prevailing view at
the time was that one needed relatively large cell counts for the validity of the
asymptotic distribution of the chi-square tests. For example, Cochran (1952,
1954), in offering advice on the use of chi-quare tests, mentioned the need of
a minimum expected value of 1 and relatively few expectations less than 5. If
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people were to follow this advice, then it is likely that they would encounter
few if any sampling zeros.

This advice was driven by Cochran’s attention to the comparison of the chi-
square statistic with the exact distribution given the row and column totals,
but the informal advice that resulted was that cell counts had to be at least
5 to use the chi-square methodology (see the related discussion of Cochran’s
work in Fienberg (1984). Thus for Roy and his students in the 1950s, sampling
zeros did not pose an issue of statistical interest.

In the final section of his 1954 paper, Cochran presented a solution to the
method for combining tests across a series of n 2× 2 tables. This is in effect a
way to test for conditional independence of the two binary variables given no
second-order interaction in the 2× 2×n table. The link was not noted in Roy
and Kastenbaums paper, and later Mantel and Haenszel (1959) independently
proposed a similar test with two modifications.

Roy’s influence ran deeper than the two papers with Mitra and with Kasten-
baum. One of his other Ph.D. students Vasant P. Bhapkar was to follow up
on these ideas in a series of papers (e.g., see Bhapkar, 1961, 1966) and also
in collaboration with Gary Koch (e.g., see Bhapkar and Koch, 1968). This
work led to the paper by Grizzle et al. (1969) and a number of subsequent
contributions by Koch and his students and colleagues.

2.3 The Emergence of Log-Linear Models and Methods

The 1960s saw a burgeoning literature on the analysis of contingency tables,
largely but not solely focused on multiplicative or log-linear models. Key pa-
pers by Birch (1963), Darroch (1962), Good (1963), and Goodman (1963,
1964), plus the availability of high-speed computers, served to spur renewed
interest in the problems of categorical data analysis and especially log-linear
models and maximum likelihood estimation. Fienberg (1992), in the introduc-
tion to the reprinting of Birch (1963), details some of these developments.

Birch (1963) is, in many ways, the pivotal paper in the literature of the 1960s
because it contains a succinct presentation of the basic results on maximum
likelihood estimation for n-way contingency tables for n ≥ 3, thereby general-
izing and unifying the results derived by Roy and Mitra (1956) and Roy and
Kastenbaum (1956). First, Birch introduced the use of the logarithmic expan-
sion of the cell mean vector in terms of u-factors, thus allowing for the general
log-linear representation and its connection with analysis of variance models.
Then, under the assumption that the counts in the table are strictly positive,
i.e., there are no sampling zero counts, he showed that the log-likelihood func-
tion admits a unique maximum, identical for a variety of sampling schemes.

6



He also showed that the table marginal totals corresponding to the highest-
order interaction terms in the model are the minimal sufficient statistics and
that these marginal totals are equal to the maximum likelihood estimates of
their expectations. This last result provided a justification for using the itera-
tive proportional fitting algorithm to compute the MLEs of the expected cell
values, which is in fact based on a sequence of cyclic adjustments using the
marginal totals.

Bishop (1967, 1969) used Birch’s results to derive connections between log-
linear models and logit models, both from the theoretical and the computa-
tional point of view. She also proposed using a version of the iterative propor-
tional fitting method developed by Deming and Stephan (1940) to perform
computations for the MLE, as a practical way to implement the ideas of Birch
to higher dimensional tables. The impetus for her work was the National
Halothane Study, and Bishop applied the methodology to data from it. Be-
cause the tables of interest from this study exceeded the capacity of the largest
available computers of the day, she was led to explore ways to simplify the
IPF calculations by multiplicative adjustments to the estimates for marginal
tables—an idea related to models with direct multiplicative estimates such as
conditional independence, studied by Roy and Mitra. Moreover, despite the
relatively large sample sizes, by the time the data were spread across the cells
in the table, there were large numbers of zero counts, especially for the numer-
ators in the rates of interest, i.e., surgical deaths in various categories. This
practical application thus went well beyond the assumptions made by Birch
and the literature that preceded him that the observed cell counts were all
positive. Yet the methodology worked well, suggesting that the assumption
could clearly be relaxed.

Fienberg, whose research had also been motivated by applications in the Na-
tional Halothane Study, gave in Fienberg (1970a) a geometrical proof of the
convergence of the IPF algorithm for tables with positive frequencies and
showed that the rate of convergence is linear. He drew on the geometric rep-
resentation of contingency tables described in Fienberg (1968) and Fienberg
and Gilbert (1970), papers that anticipated some of the recent representa-
tions that have arisen in algebraic statistics. Then, in Fienberg (1970b), he
gave sufficient conditions for the existence of unique non-zero maximum likeli-
hood estimates for the expected cell counts in incomplete tables for the model
of quasi-independence, allowing for the presence of sampling zeros in the table.
This allowed him to consider in an explicit manner the boundary points of the
domain of the log-likelihood function under the mean value parametrization.

Building on ideas in Bishop (1967, 1969), Goodman (1970, 1971) presented
methods for analyzing n-way tables using log-linear models and likelihood ra-
tio statistics. In particular, he considered the class of hierarchical log-linear
models in which the cell mean vector is expressible in closed form as a ratio-
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nal function of the sufficient statistics. For such models we can compute the
MLE directly without resorting to any iterative numerical procedure. Good-
man emphasized how these models are interpretable in terms of probability
concepts such as independence, conditional independence and equiprobability.
Haberman (1974) referred to these as decomposable models and studied them
more thoroughly.

Generalizing the result by Birch to allow for sampling zeros, Haberman (1973)
gave necessary and sufficient conditions for the existence of the MLE under
Poisson and product-multinomial sampling schemes. One of his results pro-
vides a clear justification for the Bartlett construction of the MLE via a se-
ries of additions and subtractions of appropriate quantities to and from the
observed frequencies. This observation led naturally to the “pathological” ex-
ample of a 2× 2× 2 table with positive margins and non-existent MLE shown
in Figure 2. Haberman also gave an extended and rigorous proof, valid for
general multi-way tables and log-linear models, of Birch (1963)’s result that
the marginal totals of the MLE of the cell mean vector match the observed
marginal totals and of the equivalence of the MLEs for Poisson and product-
multinomial schemes. Furthermore, he provided a detailed study of IPF and
Newton-Raphson’s method for computing the MLE, introduced the general
conditional Poisson sampling scheme for log-linear models, and gave an ex-
tensive derivation of the asymptotic properties of the MLE. He included these
results, along with many others, in his 1974 monograph, Haberman (1974).

n
4

n
2

n
3

0

0n
7

n
6

n
5

+!"!

"!+!

"!+!

+!"!

Fig. 2. 23 table with only two sampling zeros and the model of no-second-order
interaction, using Bartlett’s notation from Figure 1. The two zero cells cause the
MLE not to be defined because it is not possible to make one cell positive without
making the other negative or changing the value of the margins.

Bishop et al. (1975) stressed the importance of being able to decide whether
the MLE is defined or not and, more generally, to characterize the configu-
rations of sampling zeros associated with a non-existent MLE. Further, they
raised concerns about the negative effect of a non-existent MLE on various
inferential procedures and, in particular, on model selection.
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2.4 The Modern Log-linear Model Era: Graphical Models Through to Alge-

braic Geometry

Darroch et al. (1980) introduced the formalism and language of graph the-
ory and Markov properties for modeling interactions in the context of log-
linear models for contingency tables. By representing conditional independence
through the absence of an edge in the graph, they initiated what is now the the-
ory of graphical statistical models. They also provided a novel graph-theoretic
derivation of the properties of decomposable models and their MLEs. Later,
Gloneck et al. (1988) proved, by means of counter-examples, that positivity of
the margins is a necessary and sufficient conditions for existence of the MLE
if and only if the model is decomposable. This work ultimately led to three
major books, by Whittaker (1990), Edwards (1995) and Lauritzen (1996),
which demonstrated the usefulness of the graphical representation, both for
interpretation and for model search and related inferences, and which included
additional theoretical insights.

Lauritzen (1996) offered many novel derivations of known results for decom-
posable and other models using the powerful machinery of graphical models.
Although he was not directly concerned with the problem of existence of the
MLE, he defined the parameter space to be the sequential closure of the vector
subspace describing the log-linear model, which he termed extended log-linear

models. By working with this enlarged parameter space, he was able to prove
that the MLE is always defined, at least in an extended way, and furthermore,
just as with the “ordinary” MLE, it satisfies the marginal equations.

Recent advances in the field of algebraic statistics, especially those following
Diaconis and Sturmfels (1998), have suggested a more general approach to the
study of log-linear models that takes advantage of the connections between
algebraic and polyhedral geometry and the traditional theory of exponential
families. Although Diaconis and Sturmfels (1998) originally introduced this
formalism for studying the “exact” distribution over contingency tables un-
der a log-linear model given its minimal sufficient statistics, i.e. the observed
marginal totals , Fienberg (2000) suggested that these tools from algebraic ge-
ometry would be of potential value beyond this problem. Eriksson et al. (2005)
and Rinaldo (2005) have begun to deliver on that promise. We illustrate some
of their findings in the next sections.

2.5 Some Other Notable Contributions to the Analysis of Categorical Data

There have been many other important contributions to the analysis of cat-
egorical data over the past three decades which we do not have space to
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document in the present paper. But we would be remiss if we did not at least
mention some of them even without extensive references:

• Model generation and testing using minimum modified chi-square estima-
tion and the Wald statistic. This methodology emanated directly from the
work of Roy and his students and often works for problems that do not have
a convenient log-linear representation.

• Since the early 1970s much application involving log-linear models has been
done in the context of generalized linear models and GLM computing meth-
ods. Unfortunately, as we explain in Section 4, these methods are not good
at handling the problems of zeros described in the next section.

• Goodman (1979, 1981) developed a special class of models which extend
the log-linear family by replacing various interaction terms by multiplica-
tive counterparts. Such models, which are often referred to as “association”
models are especially valuable when we are dealing with ordinal as opposed
to nominal categorical variables and give reduced numbers of parameters
compared with traditional log-linear models.

• Correspondence analysis is yet another alternative to log-linear models that
has found adherents and its structure is close to but different from that of
“association” models, which resemble log-linear models with multiplicative
interaction terms.

• Rasch models for item response theory and latent class models have emerged
as a powerful extension or alternative to traditional log-linear model anal-
ysis.

• Bayesian methods for log-linear models have come into their own with the
emergence of computation tools such as Monte Carlo Markov chain methods.

• A particular alternative to log-linear models that has emerged in the past
two decades is the Grade of Membership model (GOM) which can be inter-
preted as a soft clustering methodology. The GoM turns out to be a special
case of a class of Bayesian mixed membership models that work for text
data and images as well.

• Causal modeling uses the directed graphical structures that entered the
literature with Darroch et al. (1980). But the ideas from causal inference
are more elaborate.

Goodman (1985, 1996) compares association and correspondence analysis mod-
els. Erosheva et al. (2002) give a succinct comparison of log-linear, Rasch, and
GoM models. Pearl (2000) and Spirtes et al. (2001) give treatments of causal
modeling including the role of latent variables and counterfactuals.
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3 The Problem of Zeros and Existence of MLEs

Log-linear models are a powerful statistical tool for the analysis of categorical
data and their use has increased greatly over the past two decades with the
compilation and distribution of large, and very often sparse, data bases, in
the social and medical sciences as well as in machine learning applications.
In log-linear model analysis, the MLE of the expected value of the vector of
observed counts plays a fundamental role for assessment of fit, model selection
and interpretation.

The existence of the MLE is essential for the usual derivation of large-sample
chi-square approximations to numerous measures of goodness of fit (Bishop
et al., 1975; Agresti, 2002; Cressie and Read, 1988) which are utilized to
perform hypothesis tests and, most importantly, are an integral part of model
selection. If the distribution of the statistic measuring the goodness of fit is
instead derived from the “exact distribution,” or the conditional distribution
given the minimal sufficient statistics (the margins), it is still necessary in
most cases to have an MLE or some similar type of estimate in order to
quantify the discrepancy of the the observed data from the fitted values. We
also require the existence of the MLE to obtain a limiting distribution in the
double-asymptotic approximations for the likelihood ratio and Pearson chi-
square statistic for tables in which both the sample size and the number of
cells are allowed to grow unbounded, a setting studied, in particular, by Morris
(1975), Haberman (1977) and Koehler (1986) (see Cressie and Read, 1988, for
a relatively complete literature review). If the MLE is not defined, inferential
procedures such as those involved with model search that use chi-square tools
may not be applied meaningfully or, at a minimum, require alteration.

As we noted in our historical review in the preceding section, the non-existence
of the MLE has long been known to relate to the presence of zero cell counts in
the observed table (see, in particular, Bishop, 1967; Goodman, 1970; Haber-
man, 1974; Bishop et al., 1975). Indeed, a number of people informally ob-
served that the only thing that appeared to matter was the numbers and
locations of the the sampling zeros and not the values of the counts in the
remaining cells (see, e.g., Fienberg, 1970b). Although Haberman (1974) gave
necessary and sufficient conditions for the existence of the MLE, his char-
acterization is nonconstructive in the sense that it does not directly lead to
implementable numerical procedures and also fails to suggest alternative meth-
ods of inference for the case of an undefined MLE. Despite these deficiencies,
Haberman (1974)’s results have remained all that exist in the published statis-
tical literature. Furthermore, no one has presented yet a numerical procedure
specifically designed to check for existence of the MLE, and the only indication
of non-existence is lack of convergence of whatever algorithm is used to com-
pute the MLE. As a result, the possibility of the non-existence of the MLE,
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even though well known, is rarely a concern for practitioners. Moreover, even
for those cases in which the non-existence is easily detectable, e.g. when the
observed table exhibits zero margins, there do not exist appropriate inferential
procedures for dealing with such a situation.

Although zero counts can occur in small tables in which the expected values
of some cells are significantly smaller than the others, they arise regularly in
large tables in which the sample size is small relative to the number of cells.
In particular, the non-existence of the MLE is potentially a very common
problem in all applications in which the data are collected in the form of
large and sparse databases, as in the social, biological and medical sciences.
In many such cases, a common mispractice is to collapse the original table into
smaller, less sparse, tables with fewer categories or variables. As Bishop et al.
(1975) and Asmussen and Edwards (1983) have made clear, such collapsing
can potentially lead to misleading and incorrect statistical inference about
associations among the variables.

Identifying the cases in which the MLE is not defined has immediate practi-
cal implications and is crucial for applying appropriate modifications to tra-
ditional procedures of model selection based on both asymptotic and exact
approximations of test statistics and for developing new inferential method-
ologies to deal with sparse tables.

Eriksson et al. (2005) offered a novel geometric interpetation of the necessary
and sufficient conditions for the existence of the MLE as originally proved
in Haberman (1974) for hierarchical log-linear models. Their findings were
further generalized by Rinaldo (2005) to include non-hiearchial models and
conditional Poisson sampling schemes. Overall, these results allowed for a full
characterization for all possible patterns of sampling zeros in the table causing
the MLE to be undefined and also led to efficient numerical procedures for
checking the existence of the MLE.

As initially noted by Haberman (1974) and later formalized by Lauritzen
(1996), under mean value parametrization the log-likelihood function always
admits a unique maximizer, even if the MLE is not defined; for cases in which
the MLE does not exist, Haberman (1974) heuristically called these maximiz-
ers extended MLEs. By combining results from the theory of linear exponential
families (see, e.g., Brown, 1986) with results from algebraic geometry, Rinaldo
(2005) provided a rigorous definition of extended MLEs, derived some of their
properties and proposed a two-step procedure for performing extended max-
imum likelihood estimation for log-linear models. In step one we identify the
problematic sampling zeros that cause the MLE not to exist, and then in step
2 we condition on these and fit a a log-linear model to the remaining cells.

In the remainder of this article, we demonstrate, by means of examples, aspects
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of the patterns of zeros that lead to non-existence of the MLE and various
practical considerations that follow from the non-existence. We believe that
the examples below give a good indication of the difficulties and subtleties,
both computational and theoretical, associated with this problem.

Remark Throughout this article, we use the wording “non-existence of the
MLE” to signify lack of solutions for the maximum likelihood optimization
problem, in accordance with a terminology long established in the log-linear
model literature (see, for example, Birch, 1963; Fienberg and Gilbert, 1970;
Haberman, 1974). Alternatively, we can say that the MLE of the cell mean
vector does not exist whenever there is no strictly positive solution to the
MLE defining equations (see, for example, Haberman, 1974, Equation 2.11).

4 Illustrations of Non-Existence Problems

Since, as we mentioned, Haberman (1974)’s necessary and sufficient conditions
for the existence of the MLE provide only a non-constructive characterization,
it is not surprising that virtually all implemented computational algorithms for
fitting log-linear models are, by design, incapable of handling these cases. The
following excerpts from the SAS online documentation 1 for the PROC FREQ,
PROC CATMOD and PROC GENMOD procedures exemplifies this situation.

• “By default, PROC FREQ does not process observations that have zero weights,

because these observations do not contribute to the total frequency count, and

because any resulting zero-weight row or column causes many of the tests

and measures of association to be undefined.”

• “For a log-linear model analysis using WLS or ML=NR, PROC CATMOD creates

response profiles only for the observed profiles. Thus, for any log-linear model

analysis with one population (the usual case), the contingency table will not

contain zeros, which means that all zero frequencies are treated as structural

zeros. If there is more than one population, then a zero in the body of the con-

tingency table is treated as a sampling zero (as long as some population has a

nonzero count for that profile). If you fit the log-linear model using ML=IPF,

the contingency table is incomplete and the zeros are treated like structural

zeros. If you want zero frequencies that PROC CATMOD would normally treat

as structural zeros to be interpreted as sampling zeros, you may specify the

ZERO=SAMPLING and MISSING=SAMPLING options in the MODEL statement.

Alternatively, you can specify ZERO=1E-20 and MISSING=1E-20.[...] sam-

pling zeros in the input data set should be specified with the ZERO= option

to ensure that these sampling zeros are not treated as structural zeros. Al-

ternatively, you can replace cell counts for sampling zeros by some positive

1 available at http://support.sas.com/onlinedoc/913/docMainpage.jsp
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number close to zero (such as 1E-20) in a DATA step.”

• “PROC GENMOD treats each observation as if it appears n times, where n is

the value of the FREQ variable for the observation. If it is not an integer,

the frequency value is truncated to an integer. If it is less than 1 or if it is

missing, the observation is not used.”

In SAS, the presence of sampling zeros is dealt with by adding small positive
quantities to the zero cells to facilitate the convergence of the underlying
numerical procedure. This common practice can be very misleading, as the
example in Table 5 below demonstrates.

We illustrate various issues and dangers associated to the usage of very com-
mon computational procedures for obtaining the MLE with artificially con-
structed tables and with a simple real-life example of a non-sparse contingency
table. All the examples we present are still sufficiently small that, in principle,
the user is able to detect lack of existence of the MLE by looking, heuristically,
at the erratic behavior of the fitting algorithm or by applying directly some
of the results from the theory. Both the theoretical results and the computa-
tional tools available to researchers, however, are of little help when we go to
analyze high-dimensional complex and/or sparse databases.

4.1 Artificial Tables

Tables 1 and 2 show two examples of non-existent MLEs for the hierarchical
log-linear model of no-second-order interaction, [12][13][23]. In both cases, the
relevant margins are strictly positive, a condition which in practice is very
frequently, but erroneously, taken to be necessary and sufficient for the MLE
to exist and in the literature has been described as “pathological” (Bishop
et al., 1975, page 115).

We have already illustrated the cause of non-existence for Table 1 in Figure 2.
For Table 2 we can conveniently explain non-existence by using collapsing
arguments (see Eriksson et al., 2005, Section 4.1). If we collapse rows 1 and
2 and columns 3 and 4, then the resulting pattern of zeros looks like that
in Table 1. But unlike the situation in Table 1, not all the zero cells impact
negatively on the existence of the MLE, i.e., the MLE would still not exist if
the zero cell in position (1, 3) in the first array were to be replaced by any
positive count.

Despite the reduced dimension of both these tables, it is quite possible that,
if we use standard statistical software for fitting log-linear models, we will not
detect non-existence. We illustrate the problem with a short computational
study of the behavior of two among the most commonly used algorithms to cal-
culate the MLE: the IPF algorithm and the Iterative Weighted Least Squares
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Table 1
Example of a 23 table with non-existent MLE for the model of no-second-order
interaction, [12][13][23].

0 1

2 4

2 3

2 0

Table 2
Example of a 33 table with non-existent MLE for the model of no-second-order
interaction, [12][13][23].

0 4 0

0 1 2

5 1 2

4 2 2

5 5 2

1 0 0

5 3 4

2 1 3

2 0 0

procedure, described by Charnes et al. (1976), which is an application of the
Newton-Raphson optimization procedure.

For the IPF procedure we used the loglin routine in R, which implements
a Fortran algorithm written by Haberman (1972, 1976). We used the default
maximum number of iterations which is set at 20 and the default tolerance
parameter, which measures the maximum deviation allowed between observed
and fitted margins, and is set at 0.1. For the re-weighted least squares algo-
rithm, we used the routine glm for fitting generalized linear models (McCullagh
and Nelder, 1989; Hastie and Pregibon, 1991), with the parameter family set
equal to poisson. The default maximum number of iterations is 25 and the
default convergence tolerance is 10−8, for the criterion

|dnew − dold|
dnew + 0.1

,

where dnew and dold are the deviance at the current and previous iteration,
respectively.

We summarize the computations performed using different values of the de-
fault parameters for both routines in Table 3 and offer the following observa-
tions:

(1) The IPF algorithm in most cases fails to satisfy the convergence criterion,
even after a large number of iterations, a surprising result given the low
dimensionality of both tables. When the MLE is not defined, the IPF is
guaranteed to converge to the extended MLE by design. This example
shows that the rate of convergence to the extended MLE, which is linear
when the MLE exists (Fienberg, 1970a), can be very slow. The behavior
of IPF when the MLE does not exist has not been carefully studied to
date.
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(2) The Newton-Raphson procedure in the glm routine uses a more stringent
convergence criterion than the default ones for the loglin routine, be-
cause it converges at a much faster rate than the IPF algorithm when
a solution exists. Precisely because of its numerical robustness, however,
the Newton-Raphson method does not provide any indication, at least in
small tables, that the MLE does not exists!

(3) When they fail to convergence, both procedures will simply produce a
warning message along with the output of fitted values and the usual
number of degrees of freedom, correct only for the case in which the
MLE is defined.

These simple examples illustrate the fact that detecting non-existence of the
MLE for tables with positive margins using available software requires a care-
ful monitoring of the convergence of the algorithm used to calculate the MLE.
Although the examples seem to suggest that the Newton-Raphson method
is computationally much more stable, in reality this is not the case. In fact,
the estimated parameters of the glm routine tend to explode when the MLE
does not exist because the maximum occurs on the boundary of the parame-
ter space at minus infinity. Thus the numerical stability observed here is not
imputable to the algorithm itself, but this is probably due to the small di-
mensionality of these examples. Rinaldo (2005) proposed modifications of the
Newton-Raphson procedure that allow it to exploit its fast rate of convergence
and, at the same time, to eliminate any exploding behavior.

4.2 Clinical Trial Example

Although non-existence of the MLE arises most frequently in sparse tables, it
can very well occur also in tables with large counts and very few zero cells.
Table 4 shows a 2 × 2 × 2 × 3 contingency table from Koch et al. (1983),
which describes the results of a clinical trial to examine the effectiveness of
an analgesic drug, for patients of two statuses and centers. The sample size is
relatively large (n = 193) with respect to the number of cells (p = 24) and,
except for two zero counts, the cell counts are quite big.

With the goal of illustrating statistical disclosure limitation techniques and
discussing the risk of disclosure associated to various marginal releases, Fien-
berg and Slavkovic (2004) analyzed two nested models, both of which fit the
data of Table 4:

(1) [CST][CSR],
(2) [CST][CSRT][TR].

The [CSR] margins has one zero entry, which causes the non-existence of
the MLE for both models. Since the two models are decomposable (see, e.g.,
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Table 3
Summary of the computations performed on the Tables 1 and 2. Default values
are marked with a (*).

Routine Tolerance Iterations Convergence Warnings

Table 1: 23 table and model [12][23][13]

loglin 1e-0 (*) 12 Yes

loglin 1e-05 20 (*) No stop("this should not happen")

loglin 1e-05 10,272 Yes

glm 1e-08 (*) 21 Yes

loglin 1e-08 500,000 No stop("this should not happen")

Table 2: 33 table and model [12][23][13]

loglin 1e-01 (*) 20 (*) No stop("this should not happen")

loglin 1e-01 27 Yes

loglin 1e-05 251,678 Yes

glm 1e-08 (*) 19 Yes

glm 1e-12 28 Yes

glm 1e-13 30 No fitted rates numerically 0

Lauritzen, 1996), the IPF algorithm converged almost instantaneously (less
than 4 iterations) in both cases. In fact, the remarkable efficiency achieved
by the IPF algorithm for decomposable models, demonstrated by Haberman
(1974), is not affected by the non-existence (see Rinaldo, 2005). As a result,
because of this fast rate of convergence, no indications of non-existence is
provided, except that some fitted values are zeros.

The pathology of zeros in the margins leading to non-existence is easy to
detect and deal with as we have done here. The same type of pathology also
occurs in the 2× 2× 2 and 3× 3× 3 tables.

4.3 Other Artificial Examples

The problem of non-existence of the MLE, even in 3-way tables, is not simply
reducible to collapsing or zeros in the margins, as is the case for the examples
of Table 2 and 4, respectively. However, more complex examples have been
difficult to construct until recently.
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Table 4
Results of clinical trial for the effectiveness of an analgesic drug. Source: Koch et al.
(1983).

Response Poor Moderate Excellent

Center Status Treatment

Active 3 20 5
1

Placebo 11 14 8

Active 3 14 121
2

Placebo 6 13 5

Active 12 12 0
1

Placebo 11 10 0

Active 9 3 42
2

Placebo 6 9 3

Table 5
Example of a 33 table with non-existent MLE for the model of no-second-order
interaction, [12][13][23].

0 2 0

5 1 4

0 2 3

2 2 3

1 0 4

0 0 2

3 5 0

1 0 0

2 4 1

Using a polyhedral geometry representation and the software package polymake
(Gawrilow and Joswig, 2000), Eriksson et al. (2005) have been able to compute
the number of degeneracies caused by patterns of zeros for p × q × r tables
for p = 2, 3, and 4 and various choices of q and r, for the same no-second-
order-interaction model. One of the first examples they discovered where the
pattern of zeros is not simply characterized corresponds to the one illustrated
in Table 5. After replacing the zero entries in this table with the small positive
number 10−8, as recommended for the SAS procedures mentioned in Section
4, we computed the MLE using the R routine loglin with a tolerance level
of 10−8 (incidentally, we note that the algorithm failed to converge within
500, 000 iterations). The values of the X2 statistic (2) and of the G2 statistic
(3) are 7.37021 × 10−6 and 1.472673 × 10−05, respectively, which, using a χ2

distribution with 8 d.f., results in p-values of nearly 1. In fact, the values of
both goodness-of-fit statistics will always be almost zero, no matter what the

positive counts are. Thus for this pattern of zero cells, we virtually never reject
the fitted model.

Eriksson et al. (2005) studied many other examples and observed that the
number of possible patterns of zero counts invalidating the MLE exhibits an

18



Table 6
Example of a 43 table with non-existent MLE for the model of no-second-order
interaction, [12][13][23].

0 0 0 4

0 0 1 2

0 1 2 3

5 1 2 3

4 0 0 2

5 0 5 2

5 6 5 2

1 0 0 0

1 5 0 2

5 3 4 2

0 2 0 0

1 2 0 0

1 5 3 2

0 0 2 0

0 2 4 0

1 2 3 0

exploding behavior as the number of classifying variables or categories grows,
so much so that computations become quickly unfeasible. Table 6 shows a more
complex pattern for a larger 43 table. Note that, as was the case with Tables
1, 2 and 5, the 2-way margins are strictly positive here, but we cannot reduce
the problem to a lower dimensional non-esistence case through collapsing.

We leave it to the interested reader to test the computation of the MLE for
these tables in their favorite log-linear model computer program.

5 The 2K Table and The No-(K − 1)st-Order Interaction Model

In the 2× 2× 2 table with the no-second order interaction model all problems
of non-existence of the MLE come about if there are 2 zero counts. But not
all pairs of zero counts cause problems. There are

�
8
2

�
= 28 ways to place 2

zeros in the table, and 12 of these pose no difficulties for maximum likelihood
estimation. These correspond to taking a row, a column, or a layer (6 possible
choices) and placing zeros in the corners of the corresponding 2 × 2 table (2
ways). The remaining 16 cases are degenerate. There can be a zero in a two-
way marginal total and there are 12 possibilities for this to happen. And then
finally we can place zeros into the “touching corners” of the full 23 table and
there are 4 ways to do this.

Now we consider the 2K contingency table and the model of no-(K−1)st-order
interaction, for K ≥ 3. Suppose that the table contains only two sampling
zeros and has positive margins. Because the model is very constrained, it is
very likely that the MLE does not exist. What we show is that the chance of
this happening increases very fast with the number of factors K, a somewhat
counter-intuitive fact.

Proposition 1 For a 2K contingency table and the model of no-(K − 1)st-
order interaction, the probability that two randomly-placed sampling zeros cause
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the MLE not to exist without inducing zero margins is

(2K−1 −K)

(2K − 1)
. (4)

5 10 15 20 25

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

K

Fig. 3. Probability (4) that two randomly sampling placed zeros cause the MLE
to be undefined without inducing zero margins as a function of the number K of
factors for the 2K table and the model of no-(K − 1)st-order interaction, K ≥ 3.

PROOF. We prove this result using a counting argument by identifying each
pair of sampling zeros with one of the

�
2K

2

�
possible edges of the complete graph

on K vertices. The orthogonal complement in R2K
of the log-linear subspace

for the model of no-(K−1)st-order interaction has dimension 1 and is spanned
by a 2K-dimensional vector δ, half of whose coordinates are +1 and the other
half are −1. By Theorem 2.2 in Haberman (1974), the MLE is not defined
whenever the two sampling zeros correspond to coordinates of δ of opposite
sign. Therefore, the number of edges leading to an existing MLE is

2

�
2K−1

2

�

= 2K−1(2K−1 − 1).

Since the number of edges associated to zero margins is K2K−1, the number
of edges causing the MLE not to be defined, without generating null margins,
is

�
2K

2

�
− 2K−1(2K−1 − 1)−K2K−1 = 2K−1(2K − 1)− 2K−1(2K−1 − 1)−K2K−1

= 2K−1
�
2K − 1− 2K−1 + 1−K

�

= 2K−1(2K − 2K−1 −K)

= 2K−1(2K−1 −K).
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Table 7
Example of a 33 table with many sampling zeros but for which the MLE for the
model of no-second-order interaction, [12][13][23], exists.

3 0 0

0 4 0

0 0 4

0 0 1

5 0 0

0 0 2

0 1 0

0 0 5

3 0 0

The probability of this occurrence is then computed as

2K−1(2K−1 −K)
�

2K

2

� =
2K−1(2K−1 −K)

2K−1(2K − 1)
=

(2K−1 −K)

(2K − 1)
. ✷

The probability (4) is a strictly increasing convex function of K and tends
monotonically to 1

2 as K ↑ ∞. The limiting behavior of Equation (4) is illus-
trated in Figure 3. The convergence occurs very rapidly.

The previous result is rather peculiar as it is concerned with binary data
and the most constrained hierarchical log-linear model. In the presence of less
saturated models and/or more categories, the patterns of sampling zeros are
in general much harder to descibe and intuition is of little help. As an example
of this combinatorial complexity, Table 7 shows a 33 contingency table sparser
than the ones presented in Table 2 and 5 but for which the MLE is well defined.

6 Conclusions

Categorical data analysis has a long and honorable tradition in the statistics
literature, going back at lease to Quetelet and spanning the nineteenth, twen-
tieth, and twenty-first centuries. In Section 2 of the paper we have provided
an overview of this history. The major developments of log-linear models and
their estimation using the method of maximum likelihood emerged during the
period from 1900 to about 1975 and S.N. Roy and his students, S. K. Mitra
and Marvin Kastenbaum, played a pivotal role in these developments. But be-
cause of the limits of computation at the time and the common wisdom that
one should only analyze tables with positive entries, they did not entertain
the prospect of analyzing large sparse contingency tables where the issue of
the existence of the maximum likelihood estimates of the cell counts would be
a serious issue.

In Sections 3, 4, and 5 of this paper we illustrated, through a series of ex-
amples, the nature of the problem of sampling zeros and we tried to explain
its importance. Computational advances mean we can conceive of handling
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larger and larger tables in our statistical analyses, and this inevitably means
we must face up to the problem of the existence of the MLE. Until the recent
introduction of ideas from algebraic geometry into statistics, we had few tools
to do so in a constructive fashion. The examples we have used to illustrate
existence characterizations are drawn from Eriksson et al. (2005) and Rinaldo
(2005). We hope to implement the characterizations in these sources in actual
computer programs in the near future.

Silvapulle (1981) gave necessary and sufficient conditions for the existence of
the MLE in binomial response models. These conditions are formulated in
terms of convex cones spanned by column vectors of the design matrix and
appear to be closely related to the polyhedral conditions for the existence of
the MLE in log-linear models derived by Eriksson et al. (2005). The study
of the connections between the non-existence of the MLE for log-linear mod-
els and for logistic models involving categorical covariates deserves thorough
investigation.

We conclude by discussing some issues relating the problem of non-existence
of the MLE with conditional, or “exact”, inference. Being caused by the pres-
ence of sampling zeros, non-existence of the MLE is more likely to occur in
sparse tables with small counts, a setting in which the traditional χ2 asymp-
totic approximation to various measures of goodness of fit is known to be
unreliable (see, e.g., Cressie and Read, 1988). In these cases, inference can be
conducted by using as a reference distribution the conditional distribution of
the tables given the observed sufficient statistics (i.e. the margins), also known
as the “exact” distribution. Starting with the seminal work of Diaconis and
Sturmfels (1998), new results from algebraic statistics have provided powerful
characterizations of the exact distribution and have emphasized the consider-
able difficulties associated with sampling from it. For example, recent work by
De Loera and Onn (2005) demonstrated that the exact distribution can in fact
be largely disconnected and possibly multi-modal and that the computational
complexity of any sampling procedure cannot be bounded. With respect to
the problem of the existence of the MLE, we note that the computation of the
conditional distribution of measures of goodness of fit is closely related with
the existence of the MLE. In fact, when the MLE does not exist, all the tables
in the support of the exact distribution have zero entries precisely in the cells
for which the expected counts cannot be estimated using maximum likelihood.
Moreover, for log-linear models there are no general results characterizing the
optimality of exact methodologies. For exponential families, conditioning on
the sufficient statistics is a device for eliminating nuisance parameters and
for obtaining optimal tests and confidence intervals; however, the validity of
this approach has been shown only for restricted models and very small ta-
bles (see, e.g., Agresti, 1992; Lehmann and Romano, 2005) and it is unclear
whether it can be extended to general log-linear models on tables of arbitrary
dimension. Further, it is unclear whether the exact distribution provides tools
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for inference in sparse tables that can be considered optimal in some sense.
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