
Corrections to
Properties and Refinements of the Fused Lasso

Alessandro Rinaldo

Both the statement and the proof of Theorem 2.3 in Rinaldo (2009) about the recovery properties of the
fused lasso are incorrect. In this note, I will revise that statement and provide a more transparent means of
analyzing the fused lasso estimator. In doing so, I will acknowledge other contributions in the literature that
instead have correct claims: see, in particular, Harchaoui and Lévy-Leduc (2010), Qian and Jia (2012) and
Rojas and Wahlberg (2014).

1 Introduction

We consider the data Y = (Y1, . . . , Yn) of the form

Yi = µ0
i + εi, i = 1, . . . , n,

where ε1, . . . , εn
i.i.d.∼ N(0, σ2

n) and the unknown mean signal µ0 = µ0(n) = (µ0
1, . . . , µ

0
n) ∈ Rn is piecewise

constant, i.e. there exists a set J0 = {i1, i2, . . . , iJ} ⊂ {1, . . . , n} of J indexes with 1 < i1 < i2 < . . . < iJ ≤ n
such that µi 6= µi−1 if and only if i ∈ J 0. The coordinates J 0 of the signal jumps are not known, nor is the
vector s0 = (si1 , . . . , siJ ) ∈ {−1, 1}J of the jump signs, where s1 = sgn(µ0

1 − µ0
i1
) and sil = sgn(µ0

il
− µ0

il−1)
for l = 2, . . . , J . We further let

δ = min
j∈J 0

|µ0
j − µ0

j−1|

denote the magnitude of the smallest jump.
We are interested in estimating the signal vector µ0 and especially the set of jumps J 0. Towards this end,

we will use the fused lasso estimator, defined as

µ̂ = µ̂(λ) = argminµ∈Rn

1

2
‖Y − µ‖2 + λ‖µ‖TV, (1)

where λ is a positive tuning parameter and for a vector x = (x1, . . . , xn) ∈ Rn, ‖x‖ denotes it Euclidean
norm and ‖x‖TV =

∑n
i=2 |xi − xi−1| its total variation. For any λ > 0, the fused estimator is well-defined, as

the solution to the problem (1) always exists and is unique.
Let Ĵ =

{
î1, î2, . . . , îĴ

}
⊂ {1, . . . , n} be the random coordinates of the jumps of the fused lasso estimator

(1), taken in increasing order, where Ĵ = |Ĵ |. That is µ̂i 6= µ̂i−1 if and only if i ∈ Ĵ . Notice that î1 > 1 and
îĴ ≤ n. Accordingly we set ŝ = (sî1 , . . . , sîĴ

) ∈ {−1,+1}Ĵ to be the vector of the jumps signs of µ̂, where

sîi = sign(µ̂î1 − µ̂1) and sîl = sign(µ̂îl − µ̂îl−1
), l = 2, . . . , Ĵ .

We would like to study the conditions under which the fused lasso estimator µ̂ will recover the locations
J 0 of the true jumps of µ0 and their signs s0. Specifically, we seek to determine conditions guaranteeing
that that the probability of the event of perfect sign recovery{

Ĵ = J 0 and ŝ = s0, for some λ > 0
}

(2)
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tends to 1 as n→∞. To that effect, we let the size of the signal n to increase unbounded, and allow all the
variables in the problem, µ0, σ, J , s and δ, to also change with n, though for convenience we do not make
this dependence explicit in our notation.

2 The Primal and Dual Solutions

As show by Kim et al. (2009) and Tibshirani and Taylor (2011), to analyze the properties of the fused lasso
solution it is very convenient to introduce explicitly the dual variables. This can be accomplished by rewriting
(1) as

min
(µ,z)∈Rn×Rn−1

1

2
‖Y − µ‖2 + λ‖z‖1, subject to z = Dµ

where D is the (n− 1)× n matrix 
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . −1 1

 , (3)

and, for a vector x ∈ Rn, ‖x‖1 =
∑n
i=1 |xi|. The variables µ and z are called the primal and dual variable of

the problems (1).
For any λ > 0, let (µ̂, ẑ) ∈ Rn × Rn−1 be the pair of primal/dual solutions, which always exists and

is unique, and whose value of course depends on the tuning parameter λ. For reasons that will become
apparent below, we will let the range of the indices of the n − 1 entries of the dual solution be (2, . . . , n):
that is, ẑ = (ẑ2, . . . , ẑn).

Simple algebra shows that the relationship between the primal solution µ̂ ∈ Rn and the dual solution
ẑ ∈ Rn−1 is given by

ẑk =

{
µ̂1 − y1 j = 2
µ̂k−1 − yk−1 + ẑk−1 k = 3, . . . , n

and ẑn = yn − µ̂n,

which further yields the identities

ẑk =

k−1∑
i=1

(µ̂i − yi) , k = 2, . . . , n and
n∑
i=1

µ̂i − yi = 0. (4)

In addition, the dual solution ẑ needs to satisfy the KKT conditions, which amount to the inequality

max
k=2,...,n

|ẑk| ≤ λ (5)

and the condition that

µ̂k 6= µ̂k−1 implies ẑk = λ sgn(µ̂k − µ̂k−1), k = 2, . . . , n. (6)

An explicit expression for the primal solution is

µ̂i =


µ̂1 = y(1, î1 − 1) + λ

î1−1
sî1 1 ≤ i < î1

µ̂îl = y(̂il, îl+1 − 1) + λ
îl+1−îl

(
sîl+1

− sîl
)

îl ≤ i < îl+1, l = 1, . . . , Ĵ − 1

µ̂îĴ
= y(̂iĴ , n)−

λ
n−îĴ+1

sîĴ
îĴ ≤ i ≤ n,

(7)

where for a vector x ∈ Rn and integers 1 ≤ i ≤ j ≤ n, we will write x(i, j) = 1
j−i+1

∑j
k=i xk for the average

of x over the coordinates (i, . . . , j).
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3 Perfect Sign Recovery

We are now ready to study the perfect sign recovery event (2).
First, we remark that with J jumps at locations 1 < i1 < i2 < iJ ≤ n, µ0 is piecewise constants over J +1

blocks of contiguous coordinates of lengths b1, b2, . . . , bJ+1, where

b1 = i1 − 1, bj = ij − ij−1 for j = 2, . . . , J, and bJ+1 = n− iJ + 1.

Also, we set bmax = maxl=1,...,J+1 bl.

Noiseless Recovery

It is instructive to first focus on perfect sign recovery in the noiseless setting when ε = 0, so that y = µ.
Though clearly uninteresting, the analysis of this case is illustrative and also leads to the same “incoherence”
results established in the literature (see (see Harchaoui and Lévy-Leduc, 2010; Qian and Jia, 2012; Rojas
and Wahlberg, 2014) in a rather straightforward way, as illustrated below in Section 5.

It is not hard to see that, for any λ < δbmin

4 , the fused lasso solution yields perfect sign recovery. Indeed,
for all such λ, by (4) and (7) the following is a pair of primal and dual solutions satisfying ẑk = λsk if k ∈ J 0

and |ẑk| ≤ λ otherwise (in fact, the inequality is strict):

µ̂i =


µ1 +

λ
i1−1si1 1 ≤ i < i1

µil +
λ

il+1−il

(
sil+1

− si1
)

il ≤ i < il+1, l = 1, . . . , J − 1

µiJ − λ
n−iJ+1siJ iJ ≤ i ≤ n

and

ẑk =


λsk k ∈ J
k−1
i1−1λsi1 2 ≤ k < i1
λsil +

k−il
il+1−ilλ

(
sil+1

− sil
)

il < k < il+1, l = 1, . . . J − 1

λsiJ − λ k−iJ
n−iJ+1siJ iJ < k ≤ n.

(8)

The previous expression shows that dual solution in the noiseless case is a piecewise linear function over
(2, . . . , n) with knots at the coordinates in J 0, where it takes the values ±λ. The slope of this function is
λ

i1−1si1 for k = 2, . . . , i1 − 1 and − λ
n−iJ+1siJ for k = iJ + 1, . . . , n. For il < k < il+1, with l = 1, . . . , J − 1,

the slope is 
2λ

il+1−il if sil+1
= 1, sil = −1

− 2λ
il+1−il if sil+1

= −1, sil = 1

0 if sil+1
= sil .

In particular, if two consecutive jumps are to occur in the same direction, i.e. if they are to form what
Rojas and Wahlberg (2014) refer to as a staircase pattern, the value of the dual variables at the coordinates
in between the jumps is constant and equal to λ or −λ, depending whether the jumps are upwards or
downwards, respectively. This suggests that in presence of a staircase, even a minuscule amount of noise
would violate the KKT conditions along those coordinates. For non-staircase scenarios, the value of the dual
variables in a neighborhood of a jump coordinate, say il with 2 < l ≤ J , will converge to the boundary
values ±λ as bl or bl+1 grow unbounded. This also suggest that the presence of non-vanishing noise will lead
to the violation the KKT conditions in a neighborhood of the locations of the true jumps. In Section 5 below,
we recast these findings in the form of an incoherence conditions for the fused lasso.

Noisy Recovery

Analogous calculations based on the identities (4) and (7) show that when, the noise variables (ε1, . . . , εn)
are present, perfect sign recovery (2) will occur for some λ < δbmin

4 if and only if the dual solutions ẑ =
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(ẑ2, . . . , ẑn) are of the form

ẑk =



λsk k ∈ J
(k − 1)

[
λsi1
i1−1 + ε(1, i1 − 1)− ε(1, k − 1)

]
1 < k < i1

λsil + (k − il)
[

λ
il+1−il

(
sil+1

− sil
)
+ ε(il, il+1 − 1)− ε(il, k − 1)

]
il < k < il+1, l = 1, . . . J − 1

λsiJ − (k − iJ)
[

λ
n−iJ+1siJ + ε(iJ , n)− ε(iJ , k − 1)

]
iJ < k ≤ n,

(9)
and satisfy the KKT conditions (5) and (6). In fact, using Lemma 1 in Tibshirani and Taylor (2011), we see
that, almost surely with respect to the distribution of (ε1, . . . , εn), |ẑk| < λ for all k 6∈ Ĵ .

Comparing the previous expression with equation (8) describing the form of the dual solution in the
noiseless setting, it becomes apparent that the presence of noise results in additional stochastic terms, one
for each block, involving partial averages of the errors. As it turns out, these terms are discrete Brownian
bridges. By the standard discrete Brownian bridge of length N ∈ N, denoted with {BN (j), j = 1, . . . , N},
we mean the centered Gaussian stochastic process on {1, . . . , N} with covariance function given by

E [BN (j)BN (j′)] = min{j, j′} − j j′

N
, 1 ≤ j, j′ ≤ N.

The coordinate values of the process BN can be expressed using partial averages of a sequence of N inde-
pendent Gaussian variables. Specifically,

BN (j) =

j∑
i=1

ηi − jη(1, N) = j (η(1, j)− η(1, N)) , j = 1, . . . , N,

where {η1, . . . , ηN} are i.i.d. standard Gaussian variates. Thus, the joint distribution of {BN (j), j =

1, . . . , N} coincides with the joint conditional distribution of the random walk {
∑j
i=1 ηj , j = 1, . . . , N} given∑N

i=1 ηi = 0. It is also immediate to see that the discrete Brownian bridge is symmetric and possesses the
time reversal property: both −BN and {BN (N − j), j = 1 . . . , N} are discrete Brownian bridges whenever
BN is. See, e.g., Anderson and Stephens (1997).

Therefore, using (9), we conclude that, whenever exact sign recovery occurs for some λ > 0, then
the dual solution ẑ will be comprised of J + 1 consecutive discrete Brownian bridges with drifts of lengths
b1+1, . . . , bJ+1 and jointing at the coordinates J 0, where they take the values {λsk, k ∈ J 0}. The drift terms
are given by the values of the dual solution at the same λ in the noiseless case (8). Furthermore, in order
to satisfy the condition (5), all these Brownian bridges must take values inside the interval [−λ, λ]. Using
the symmetry and time reversal property of the standard Brownian bridge, we can express these conditions
equivalently as the conditions that independent Brownian bridges, one for each block, will not cross certain
linear boundaries.

Lemma 3.1. The probability that fused lasso will yield perfect sign recovery (2) is the probability that J + 1
independent standard discrete Brownian bridges

Bb1+1, Bb2 , . . . , BbJ+1,

will satisfy simultaneously the constraints

• first jump constraint:

−λ
σ
− j λ

σ(i1 − 1)
≤ Bb1+1(j) ≤

λ

σ
− j λ

σ(i1 − 1)
, j = 1, . . . , b1;

• last jump constraint:

−λ
σ
− j λ

σ(n− iJ + 1)
≤ Bb

J+1(j) ≤
λ

σ
− j λ

σ(n− iJ + 1)
, j = 1, . . . , bJ+1 − 1;
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• intermediate jump constraints: for l = 1, . . . , J − 1, if sil 6= isl+1

−j 2λ

σ(il+1 − il)
≤ Bbl(j) ≤

2λ

σ
− j 2λ

σ(il+1 − il)
, j = 1, . . . , bl − 1,

while if sil = sil+1
(a staircase block)

Bbl(j) ≥ 0, j = 1, . . . , bl − 1. (10)

We remark that the relevance of the discrete Brownian bridge and, more generally, of the fluctuations of
partial sums of random sequences for estimation and testing in change detection problem is certainly not
new. See, e.g., Siegmund (1986), Yao and Au (1989), Lavielle and Moulines (2000) and references therein.
With regards to the performance of the fused lasso, Rojas and Wahlberg (2014) first noted that the dual
solution to the fused lasso problem take the form of a sequence of discrete Brownian bridges.

We can now rely on the above representation to identify those conditions, if any, under which the event
of perfect sign recovery (2) has probability tending to one. Towards that end, we must distinguish between
two different signal patterns.

The Staircase Blocks

For a staircase block, (10) shows the probability that the KKT conditions are violated is the same as the
probability that a standard Brownian bridge of length bl ever crosses the zero line. By Andersen (1953), this
probability is exactly bl−1

bl
≥ 1/2, tending to 1 as bl →∞. It is important to also notice that, this probability is

independent of the level of the variance σ2 and the choice of regularization parameter λ. Thus, for staircase
blocks, perfect sign recovery is impossible.

The Non-staircase Blocks

We now turn to the case of a non-staircase block, say block l. For brevity, we set al = λ
σnbl

.
Notice first that if al = O(1), then there is a non-vanishing probability that the KKT conditions will

be violated, and, therefore, perfect sign recovery is not possible. To get a crude lower bound on this
probability, it is enough to observe that is is at least the probability that Bbl(1) ≥ 2al, which is bounded
away from zero under the assumed scaling of al. However, it is worth observing that the violation of the
KKT conditions happens near the boundaries of the block. In fact, let f(bl) be an increasing function of bl
such that f(bl) → ∞ with f(bl) = o(bl) and f(bl) − log(bl − f(bl)) → ∞ as bl → ∞, for instance bcl , for any
0 < c < 1. Then, using a simple Gaussian tail bound and the union bound, the probability that Bbl(j) ≥ 2alj
for some j ≥ f(n) is bounded by

(bl − f(bl)) exp
{
−2a2l f(bl)

}
which vanishes provided that al = O1). Therefore, with probability tending to one as bl → ∞, the KKT
conditions may only be violated for the coordinates j < f(bl).

Now let us suppose that al is allowed to grow unbounded. Then, using again standard Gaussian tail
bounds, the union bound and the fact that a2l j

2

j(1−j/bl) ≥ a
2
l for all j = 1, . . . , bl − 1, we obtain that

P (Bbl(j) ≥ 2alj, for some j = 1, . . . , bl) ≤
bl−1∑
j=1

exp

{
− 4a2l j

2

2j(1− j/bl)

}
≤ bl exp−2a

2
l .

By setting al =
√

1
2 log(n

cbl), for any c > 0, this probability is 1/nc. By symmetry, the probability that the
KKT conditions are violated for block l is no larger than 2/nc. Letting Ja denote the number of non-staircase
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blocks, we obtain that the probability that the KKT conditions are violated for the non-staircase blocks is no
larger than 2/nc whenever, in addition to λ > δbmin

4 ,

λ

σ
≥ bmax

√
1

2
log(ncJabmax). (11)

Thus, for non-staircase blocks perfect sign recovery holds under the above conditions.

4 Discussion

In this note, I have shown that the probability that the fused lasso delivers perfect sign recovery for the
coordinates jumps of a piecewise constant signal is non-vanishing for signals with staircase patterns and can
be vanishing otherwise if (11) holds. This provides a correction to the wrong claims made in Rinaldo (2009).

Clearly, the condition (11) (along with the condition λ < δbmin

4 ) is extremely strong. Rojas and Wahlberg
(2014) have considered a weaker notion of approximate sign recovery for the fused lasso that allows for
mistakes to be made in coordinates close to J 0.

5 Appendix: The Incoherence Condition for the Fused Lasso

In this section we recast the impossibility and difficulties of perfect sign recovery by the fused lasso estimator
in the form of an incoherence condition, as is customary in the analysis of lasso type problem. See, in
particular, Harchaoui and Lévy-Leduc (2010); Qian and Jia (2012); Rojas and Wahlberg (2014).

For the sake of notational consistency, we will index the n − 1 rows of the matrix D, defined in (3),
with {2, . . . , n}. For the subset J 0 of {2, . . . , n} indexing the J coordinate jumps of the signal µ0, we will
write D−J 0 for the matrix of dimension (n− 1− J)× n obtained by removing the rows of D corresponding
to the indexes in J 0. Likewise, DJ 0 is the J × n submatrix of D corresponding to the rows indexed by
J 0. We use an analogous notations for the vector of the dual solutions ẑ ∈ Rn−1: we will write ẑJ 0 ∈ RJ
and ẑ−J 0 ∈ Rn−1−J for the vectors obtained by considering only the entries of ẑ in coordinates J 0 and
{2, . . . , n} \ J 0, respectively.

If µ̂ is to yield perfect sign recovery, the KKT conditions imply that the dual solution ẑ must satisfy

ẑJ 0 = λsgn
(
DJ 0µ0

)
= λs

and using the second equation on page 20 of Tibshirani and Taylor (2011),

ẑ−J 0 =
(
D−J 0D>−J 0

)−1
D−J 0ε−

(
D−J 0D>−J 0

)−1
D−J 0

(
λD>J 0s

)
, (12)

with ‖ẑ‖∞ ≤ λ.
A routine application of the primal-dual witness type-arguments (Wainwright, 2009) further yields that

the incoherence-type of condition for the lasso problem is∥∥∥(D−J 0D>−J 0

)−1
D−J 0

(
D>J 0s

)∥∥∥
∞
< 1− κ, (13)

for a fixed κ ∈ (0, 1) and for all n large enough.
Now we show how the previous expression is related to the simpler formulas (8). It can be verified with

simple yet tedious calculations that the matrix
(
D−J 0D>−J 0

)−1
D−J 0 is the block diagonal matrix

D1 0 0 . . . 0
0 D2 0 . . . 0
...

...
...

...
...

0 0 0 . . . DJ+1

 ,
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where, for l = 1, . . . , J + 1,
Dl = − (Abl +BblEbl) .

In the above expression, Abl has dimension (bl − 1)× bl and is of the form
1 0 0 . . . 0 0
1 1 0 . . . 0 0
...

...
...

...
...

...
1 1 1 . . . 1 0

 ,
Ebl is the (bl − 1)× bl matrix whose entries are all 1’s and Bbl the (bl − 1)-dimensional diagonal matrix with

diagonal entries
(

1
bl
, 2
bl
, . . . , bl−1bl

)
. Explicitly, for x ∈ Rbl , the j-th coordinate of the (bl − 1)-dimensional

vector (Abl +BblEbl)x is

j∑
i=1

xi +
j

bl

bl∑
i=1

xi = j (x(1, j)− x(1, bl)) , j = 1, . . . , bl − 1. (14)

Similar calculations appear also in Harchaoui and Lévy-Leduc (2010).
We now take note that the n-dimensional vector D>J 0s is the concatenation of J + 1 vectors of lengths

b1, . . . , bJ+1 such that

• the first subvector of length b1 has zero entries along each of its coordinate, except the last coordinate,
which takes the value −s1;

• the l-subvector of length bl, for l = 2, . . . , J , has zero entries along each of its coordinate, except the
first and last coordinates, which take the values sl−1 and −sl, respectively;

• the last subvector of length bJ+1 has zero entries along each of its coordinates, except the first coordi-
nate, which takes the value sJ .

In light of this fact and (14), it follows that the first term on the right hand side of equation (12) matches
formula (9) and the second term matches (8), for all k 6∈ J 0. In particular, the incoherence condition (13)
requires the values of the dual solution ẑ in the coordinates outside J to be bounded away from ±λ. As
clearly seen from (8), this cannot happen in a staircase scenario (where the values of the dual solution are
±λ) and can only be verified in non-staircase jumps only provided that the size of the block remain bounded.
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