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Abstract. Contingency tables have provided a fertile ground for the growth of
algebraic statistics. In this paper we briefly outline some features of this work and point
to open research problems. We focus on the problem of maximum likelihood estimation
for log-linear models and a related problem of disclosure limitation to protect the con-
fidentiality of individual responses. Risk of disclosure has often been measured either
formally or informally in terms of information contained in marginal tables linked to a
log-linear model analysis and has focused on disclosure potential of small cell counts,
especially those equal to 1 or 2. One way to assess risk is to compute bounds for cell en-
tries given a set of released marginals. Both of these methodologies become complicated
for large sparse tables. This paper revisits the problem of computing bounds for cell
entries and picks up on a theme first suggested in Fienberg [21] that there is an intimate
link between the ideas on bounds and the existence of maximum likelihood estimates,
and shows how these ideas can be made rigorous through the underlying mathematics
of the same geometric/algebraic framework. We illustrate the linkages through a series
of examples. We also discuss the more complex problem of releasing marginal and con-
ditional information. We illustrate the statistical features of the methodology on two
examples and then conclude with a series of open problems.
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1. Introduction. Polynomials abound in the specification of statisti-
cal models and inferential methods. In particular, many common statistical
procedures involve finding the solution to polynomial equations. Thus, in
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retrospect, we should not be surprised at the sudden emergence of a wide
array of papers linking statistical methodology to modern approaches to
computational algebraic geometry. But the fact is that these connections
are a relatively recent development in the statistical literature and they
have led to the use of the terminology “algebraic statistics” to describe
this linkage.

Contingency tables are arrays of non-negative integers arising from
cross-classifying n objects based on a set of k criteria or categorical vari-
ables (see [1, 32]). Each entry of a contingency table is a non-negative
integer indicating the number of times a given configuration of the classi-
fying criteria, or cell, has been observed in the sample. Log-linear models
form a class of statistical models for the joint probability of cell entries. Our
work has focused on three interrelated classes of problems: (1) geometric
characterization of log-linear models for cell probabilities for contingency
tables, (2) estimation of cell probabilities under log-linear models, and (3)
disclosure limitation strategies associated with contingency tables which
protect against the identification of individuals associated with counts in
the tables.

The disclosure limitation literature for contingency table data is highly
varied, e.g., see [18], but over the past decade a substantial amount of it
has focused on the risk-utility tradeoff where risk has been measured either
formally or informally in terms of information contained in marginal tables
and risk has focused on disclosure potential of small cell counts, especially
those equal to 1 or 2 (for details, see [25, 26]). Among the ways considered
for assessing risk have been the computation of bounds for cell entries, e.g.,
see [11, 12, 13, 14, 15], and counting of possible table realizations, e.g., see
[26].

Recent advances in the field of algebraic statistics have provided novel
and broader mathematical tools for log-linear models and, more gener-
ally, the analysis of categorical data. We outline below the most relevant
aspects of the algebraic statistics formalism, which essentially involves a
representation, through polynomials and polyhedral objects, of the inter-
action between the set of all possible configurations of cell probabilities,
known as the parameter space, and the set of all observable arrays of non-
negative entries summing to n and satisfying certain linear relationships to
be described below, known as the sample space.

2. Some Technical Details for Bounds and MLEs. We can de-
scribe both the determination of cell bounds associated to the release of
marginal tables and the problem of nonexistence of the MLE within the
same geometric/algebraic framework.

2.1. Technical Specifications and Geometrical Objects. Con-
sider k categorical random variables, X1, . . . ,Xk, where each Xi takes value
on the finite set of categories [di] ≡ {1, . . . , di}. Letting D =

�k
i=1[di], RD

is the vector space of k-dimensional arrays of the format d1 × . . . × dk,
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with a total of d =
�

i di entries. The cross-classification of n independent
and identically distributed realizations of (X1, . . . ,Xk) produces a random
integer-valued array n ∈ RD, called a k-way contingency table, whose co-
ordinate entry nii,...,ik is the number of times the label combination, or
cell, (i1, . . . , ik) is observed in the sample (see [1, 32] for details). The
probability that a given cell appears in the sample is

pi1,...,ik = Pr {(X1, . . . ,Xk) = (i1, . . . , ik)} , (i1, . . . , ik) ∈ D,

and we denote the corresponding array in RD with p. It will often be con-
venient to order the cells in some prespecified way (e.g., lexicographically)
and to treat n and p as vectors in Rd rather than arrays. For example, for
a 3-way contingency table n with d1 = d2 = d3 = 2, or a 2×2×2 table, we
will use interchangeably the array notation n = (n111, n112, . . . , n222) and
the vector notation n = (n1, n2, . . . , n8). A hierarchical log-linear model is
a probabilistic model specifying the set of dependencies, or maximal inter-
actions, among the k variables of interest. One can think of a log-linear
model as a simplicial complex ∆ on [k] = {1, . . . , k}, whose facets indicate
the groups of interacting variables. For example, for a 2 × 2 × 2 table,
the model ∆ = {{1, 2}, {3}} specifies an interaction between the first and
second variable, while the third is independent of the other two. Simi-
larly, ∆ = {{1, 2}, {1, 3}, {2, 3}}, the model of no-2nd-order interaction,
postulates an interaction between all pairs of variables. In accordance to
the notation adopted in the statistical literature, we will also write these
models as [12][3] and [12][13][23], respectively.

A sub-class of log-linear models that enjoys remarkable properties and
deserves special attention is the class of decomposable models: ∆ is said to
be decomposable if there exists a decomposition ∆ = (∆1, S, ∆2) with ∆1∪
∆2 = ∆ and ∆1∩∆2 = 2S , and ∆i is either a simplex or decomposable, for
each i = 1, 2. Decomposable models are the simplest log-linear models for
which the statistical tasks described in this article become straightforward.
The smallest decomposable model with a non-trivial separation is ∆ =
{{1, 2}, {2, 3}}, where S = {2}.

For any given log-linear model ∆, the vector of cell probabilities p is a
point in the interior of the standard (d−1)-simplex such that log p belongs
to the row span of some m × d matrix A, called the design matrix, which
depends only on ∆ (and not on the random realization n). Clearly, for
every ∆, there are many choices for A, but we may always assume A to be
0-1. For an example, see Table 1.

Once we specify a model ∆ through its design matrix A, we consider
the vector t = An of margins or marginal tables. From an inferential
standpoint, the vector t is all that a statistician needs to know in order to
study ∆: in statistics, t is called a minimal sufficient statistics. In fact,
although many different tables may give rise to the same margins t, they
are indistinguishable in the sense that they all provide the same information
on ∆. See, e.g. [1, 30, 32] for details. In general, we can choose the design
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Table 1
A design matrix for the model of no-2nd-order interaction for a 2 × 2 × 2 table.

The first line displays the label combinations ordered lexicographically.

111 112 121 122 211 212 221 222
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

matrices in such a way that the coordinates of the vector t are the marginal
sums of the array n with respect to the coordinates specified by the co-
facets of ∆. For the example in Table 1, it is easy to see that the first
coordinate of t is n111 + n112, which we will write in marginal notation as
n11+, the “+” symbol referring to the variable over which the summation
is taken.

Parameter Space. The parameter space refers to the set of all probabil-
ity points p in the standard (d− 1)-simplex such that log p belongs to the
row span of A. In algebraic statistics the parameter space is defined by the
solution set of certain polynomial maps. Specifically, the parameter space
is a smooth hyper-surface of points satisfying binomial equations, in fact a
toric variety [41]. For a given design matrix A, the toric variety describing
the associated log-linear model is the set of all probability vectors p such
that pz+ − pz− = 0 for all integer valued vectors z in kernel(A), where
z+ = max(z, 0), z− = −min(z, 0), the operations being carried element-
wise, and pz =

�
i p

zi
i . For a 2×2 table and the model of independence, the

toric variety is the familiar surface of independence (see, e.g. [1]) depicted
in Figure 1. For further details on the algebraic geometry of other aspects
of 2 × 2 tables, see [37, 40, 3]. The advantage of the algebraic statistics
representation for the parameter space over the traditional log-linear rep-
resentation based on logarithms, is that the points on the toric variety are
allowed to be on the relative boundary of the simplex. This implies that
the toric variety includes not only the points p such that log p belongs to
the row span of A, but also points in its sequential closure.

Sample Space. The sample space indicates the set of possible observable
contingency tables, namely the set of all non-negative integer-valued array
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Fig. 1. Surface of independence for the 2 × 2 table. The tetrahedron represents
the set of all probability distributions p = (p11, p12, p21, p22) for a 2× 2 table, while the
enclosed surface identifies the probability distributions satisfying the equation p11p22 =
p12p21, i.e. the toric variety for the model of independence.

in RD with entries summing to n. Virtually all data-dependent objects
encountered in the study of log-linear models are polyhedra (see, e.g., [44]).

In particular, for a given log-linear model and a set of margins t,
consider the polytope

Pt = {x ∈ Rd : t = Ax,x ≥ 0}

of all real-valued non-negative tables having the same margins t, computed
using the design matrix A. The set of all integer points inside Pt is the
fiber of t. Formally, if n is any table such that t = An, then the fiber of t is
F(n) ≡ {v ∈ Nd : n− v ∈ kernel(A)}. Thus the fiber is the portion of the
sample space associated with the same set of margins. Since margins are
also minimal sufficient statistics, F(n) consists precisely of all the possible
tables that would provide the same information on the unknown underly-
ing vector p as the observed table. These tables form the support of the
conditional distribution given the margins, often called the exact distribu-
tion, because it does not depend on the model parameters. Properties of
the fiber are fundamental both for assessing the risk of disclosure and for
conducting “exact” inference, e.g., see [10, 22].

Fibers are also related to Markov bases. Let B ⊆ kernel(A) ∩ Zd and,
for each table n, let F(n)B be the undirected graph whose nodes are the
elements of F(n) and in which two nodes v and v� are connected if and only
if either v− v� ∈ B or v� − v ∈ B. B is said to be a Markov basis if F(n)B
is connected for each n. Markov bases can be obtained as the minimal
generators of the toric ideal �pz+ −pz−

, z ∈ kernel(A)∩Zd� (see, e.g. [10]).
Although Markov bases are by no means unique, for a given design matrix
A all Markov bases which are minimal with respect to inclusion have the
same cardinality, so that it is customary to talk about “the” Markov basis.
When the Markov basis B is available, one can walk around all the points
in the fiber without leaving Pt: for any n1,n2 ∈ F(n), there is a sequence
of Markov moves (z1, . . . , zL) ∈ B such that n1 = n2 +

�L
i=1 zi, with
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n1 +
�j

i=1 zi ≥ 0 for all 1 ≤ j ≤ L. In fact, this is possible if only if B is a
Markov basis. Therefore, Markov bases fully characterize the set of fibers
associated to all possible observable tables.

Another polyhedral object relevant to log-linear modeling is the convex
hull of all the possible margins t that could be observed for a given design
matrix A. This object, a polyhedral cone called the marginal cone, is an
unbounded (here n is allowed to be any integer number) convex set con-
sisting of all the linear combinations of the columns of A with nonnegative
coefficients, i.e.,

CA = {y ∈ Rm : y = Ax, x ∈ Rd
,x ≥ 0}.

As a result, the marginal cone comprises the set of all possible observable
sufficient statistics and also their expectations, which are the points A(np)
with p ranging over the simplex. For example, for the I × J × K table
and the model of no-2nd-order interaction, the minimal sufficient statistics
are the three sets of two-dimensional marginal sums, {nij+}, {ni+k}, and
{n+jk}, so that t is an integer valued random vector of dimension IJ +
IK + JK.

To summarize, we use the design matrix A and the marginal tables
t to obtain geometric representations of the parameter and sample space
for log-linear models. On one hand, A determines a system of polynomial
equations that encode the dependencies among the random variables in the
table. The solution set of these equations is the variety representing the
parameter space as a compact subset of the simplex. On the other hand,
every point t in the marginal cone CA determines the polytope Pt, which in
turn contains the fiber, i.e., the portion of the sample space that is relevant
for both statistical inference and disclosure limitation.

2.2. Maximum Likelihood Estimation. The method of maximum
likelihood (ML) is a standard approach to parameter estimation which
chooses as the estimate of p the point in the simplex which maximizes
the probability of the observed data n as a function of the parameter p.

The maximum likelihood estimate (MLE) �p is said to exist when �p
lies on the interior of the simplex. In this case, �p is the unique point such
that log �p is in the row range of A and satisfies the marginal constraints
A�p = 1

nt (see, e.g., Haberman [30]). In particular, for decomposable log-
linear models, the entries of the MLE are rational functions of the sample
size n and the entries of the marginal vector t, and we can compute them
easily. Furthermore, the MLE of a decomposable model exists if and only
if t > 0. In contrast, for non-decomposable models, there is no closed-
form expression for the MLE, which we can only evaluate numerically, and
positivity of the observed marginals is only a necessary condition.

More generally, Eriksson et al. [20] show that existence of the MLE is
equivalent to requiring that the marginal table t belongs to the interior of
the marginal cone CA. Not only is this condition simple to interpret, but it
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Table 2
(a): Configurations of zero cells that cause nonexistence of the MLE (a facial

set) for the model of no-second-order interaction without producing null margins. (b):

Example of a table with many sampling zeros but for which the MLE for the model
of no-second-order interaction is well defined. Cells with entries + indicate positive
entries. Source: Fienberg and Rinaldo [24].

(a)
0 + 0
+ + +
0 + +

+ + +
+ 0 +
0 0 +

+ + 0
+ 0 0
+ + +

(b)
+ 0 0
0 + 0
0 0 +

0 0 +
+ 0 0
0 + 0

0 + 0
0 0 +
+ 0 0

also reduces the problem of detecting nonexistence of the MLE to a linear
optimization program over a convex set. Furthermore, we can use the same
geometric formalism to characterize cases in which the MLE does not exist,
a circumstance that occurs whenever t lies on the boundary of CA. In fact,
for any point t in the marginal cone, the polytope Pt containing the fiber is
never empty and it intersects always the toric variety describing the model
implied by A at one point �pe [35]. The first condition implies A�pe = 1

nt and
the second that �pe is in the closure of the log-linear parameter space. If t is
in the interior of CA, then these are precisely the defining conditions for the
MLE, hence �pe = �p. If t is instead a point on the boundary of CA, �pe will
have some zero coordinates and will be the MLE of a restricted log-linear
model at the boundary of the parameter space, an extended MLE. Notice
that an extended MLE does not possess a representation as the logarithm
of a point in the simplex belonging to the row range of A. Nonetheless, it is
a well defined point on the toric variety. The extended MLE realizes, both
statistically and geometrically, the connection between the sample space
and the parameter space.

For example, the pattern of zero cells in Table 2(a) leads to the nonex-
istence of the MLE under the model of no-second-order interaction even
though the entries in the margins are strictly positive. We obtained this
table, along with others providing novel examples of “pathological” con-
figurations of sampling zeros, using polymake (Gawrilow and Joswig [28]).
The example in Table 2(b) is sparser than the one in Table 2(a) but the
MLE exists in the former case and not in the latter.

2.3. Bounds for Cell Counts. Public/government agencies collect
high quality, multi-dimensional census and survey data and they gener-
ate databases that they do not make fully accessible to the public. These
categorical data are often represented in tabular form as large and sparse
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contingency tables with small counts. The release of partial information
from such databases is of public utility and typically consists of publishing
marginal and conditional tables. Users can cumulate the released informa-
tion and translate it in upper and lower bounds for cell counts. If these
bounds are close for a particular cell, then an intruder could learn the cor-
responding count and this might compromise the confidentiality offered to
individual respondents.

Individuals or establishments that have an uncommon combinations of
attributes will show up in the contingency table in cells with small counts
of “1” or “2”. A count of “1” might correspond to a population unique
whose identity might be at risk unless the table contains a significant num-
ber of sample uniques that are not population uniques. In this case the
“true” population uniques are concealed by the counts of “1” associated
with “false” uniques. Counts of “2” can lead to similar violations if the
intruder is one of the two persons and, for other small counts, we have
the notion of inferential or probabilistic disclosure, i.e. the possibility of
determining with a high degree of certainty individuals in the database.
Such small counts also have the highest disclosure risk because their upper
and lower bounds are close to the true value even for modest amounts of
released information. This is especially true for large sparse categorical
databases (e.g., census data) in which almost all counts are zero. These
counts translate into small counts in the released marginals, which in turn
lead to tight upper and lower bounds.

Consider a 2 × 2 contingency table with cell counts nij and row and
column totals, ni+ and n+j respectively, adding to the total n++. If we
are given the row and column totals, then the well-known Fréchet bounds
for the individual cell counts are:

min(ni+, n+j) ≥ nij ≥ max(ni+ + n+j − n, 0) for i = 1, 2, j = 1, 2. (2.1)

The extra lower bound component comes from the upper bounds on the
cells complementary to (i, j). These bounds have been widely exploited
in the disclosure limitation literature and have served as the basis for the
development of statistical theory on copulas [33]. The link to statistical
theory comes from recognizing that the minimum component ni++n+j−n

corresponds to the MLE of the expected cell value under independence,
ni+n+j/n. The bounds are also directly applicable to I × J tables and
essentially a related argument can be used to derive exact sharp bounds for
multi-way tables whenever the marginal totals that are fixed correspond to
the minimal sufficient statistics of a log-linear model that is decomposable.

Next we consider a 2× 2× 2 table with cell counts nijk, and two way
marginal totals nij+, ni+j , and n+jk, adding to the grand total n+++.
Given the 2-way margins, the bounds for the count in the (i, j, k) cell for
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i = 1, 2, j = 1, 2,and k = 1, 2, are

min(nij+, ni+k, n+jk, nijk + nīj̄k̄)
≥ nijk

≥ max(ni++ − ni+k − nij+, n+j+ − nij+ − n+jk, n++k − ni+k − n+jk, 0)
(2.2)

where (̄i, j̄, k̄) is the complementary cell to (i, j, k) found by replacing 1
by 2 and 2 by 1, respectively. Equation (2.3) consists of a combination of
Fréchet bounds for each of the rows, columns, and layers of the full table
plus an extra upper bound component nijk + nīj̄k̄.

Fienberg [21] suggested how to use this basic construction to get
bounds for an I×J×K table by considering all possible collapsed 2×2×2
versions (based on all possible permutations of the subscripts). Dobra [11]
refined this construction and developed a “generalized shuttle” algorithm,
extending an idea in Buzzigoli and Giusti [2] in order to obtain sharp bound
by iterating between “naive” upper bound and lower bounds. This algo-
rithm finds the sharp bounds for decomposable models without extensive
computation, which is reduced in other special cases, e.g., see Dobra and
Fienberg [16]. Nonetheless, it does not scale well for large sparse tables,
c.f. the fact that non-integer bound problems are NP -hard (see [6, 7]).

2.4. Link between Maximum Likelihood Estimates and Cell
Bounds. We now use the algebraic geometric machinery to make the link
between existence of the MLE and the computation of cell bounds explicit
through the following result.

Proposition 2.1. For any lattice point t on the boundary of the
marginal cone, let �pe be the extended MLE and let Zt = {i : �pe

i = 0} be the
set of cells for which the extended MLE is zero. Then, each table n in the
fiber Pt is such that ni = 0 for all i ∈ Zt.

The set Zt is uniquely determined by the margins t and corresponds to
one of the many patterns of sampling zeros which invalidate the existence of
the MLE. For the 2×2×2 table and the model of no-2nd-order interaction,
“impermissible” patterns of zeros occur in pairs of cells where i + j + k is
odd for one and even for the other. These cells can either be in adjacent
cells adding to a margin zero in one of the two-way margins or they can
be of the form (i, j, k) and (̄i, j̄, k̄) for all possible values of i, j and k,
c.f., Haberman [30]. Thus in particular, the MLE does not exist when
nijk + nīj̄k̄ = 0. The extra component of the upper bound for this non-
decomposable model in equation (2.3) is thus inextricably bound up with
the existence of MLEs.

The cells not belonging to Zt form a (random, as it depends on the
random quantity t) facial set (see [29, 35]). The cells with positive entries
in Tables 2 (a) and Table 3 are examples of facial sets. Proposition 2.1
then shows that the determination of the facial set associated with a given
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(:,:,1)= (:,:,2)= (:,:,3)= (:,:,4)=
0 0 0 5
4 5 5 1
1 5 0 1
1 0 0 1

0 0 1 1
0 0 6 0
5 3 2 2
5 0 2 2

0 1 2 2
0 5 5 0
0 4 0 0
3 2 4 3

4 2 3 3
2 2 2 0
2 2 0 0
2 0 0 0

Table 3
A 4×4×4 table with a pattern of zeros corresponding to a non empty Zt and,

therefore, to a nonexistent MLE for the model of no-second-order interaction. Source:
Fienberg and Rinaldo [24].

marginal table is crucial, not only for computing the extended MLE, but
also for calculating individual cell bounds, as it implies that one only needs
to consider the cells in the facial set for performing the tasks of counting,
sampling and optimizing over the fiber.

The determination of the facial sets is an instance of what in compu-
tational geometry is known as the face-enumeration problem: the compu-
tations of all the faces of a given polyhedron. Unfortunately, the number of
solutions of this problem is often affected by a combinatorial explosion. As
a result, complete enumeration of all the facial sets is impractical. A much
more efficient solution consists in finding just the facial set corresponding
to the observed margins t, using the methods developed in [23].

Table 3 shows a 4×4×4 table for which the MLE for the model of
no-2nd-order interaction is nonexistent. The zero entries correspond to
facial set for the minimal sufficient statistics, which as we noted above are
the sets of all two-way margins. There are 123 tables in the fiber. Table
provides the cell bounds given the two-way marginals computed using the
shuttle algorithm [11]. Proposition 2.1 implies that the upper bounds for
the entries of the zero cells, which correspond to a set Zt, is zero. The
integer bounds for this table are shown in Table 4. Notice that the entry
range for each cell is an interval of integer points, i.e., the fiber is connected,
and thus the knowledge of cell bounds is very informative for assessing the
risk of disclosure.

3. More on Disclosure Limitation: From Margins to Margins
and Conditionals. Because data from both marginal and conditional
tables are widely reported as summary data from multi-way contingency
tables, we need to understand how they differ from the sets of marginals in
terms of the information they convey about the entries in the tables. For
example, we want to see whether or not sets of marginal and conditional
distributions for a contingency table are sufficient to uniquely identify the
full joint distribution. When this is not the case we can protect against
disclosure further by replacing a marginal table by constituent marginal
and conditional components.

At first blush, one might think that there would also be a direct role for



CONTINGENCY TABLES 11

(:,:,1)= (:,:,2)=
[0, 0] [0, 0] [0, 0] [5, 5]
[2, 6] [3, 7] [5, 5] [1, 1]
[0, 4] [3, 7] [0, 0] [0, 2]
[0, 2] [0, 0] [0, 0] [0, 2]

[0, 0] [0, 0] [0, 2] [0, 2]
[0, 0] [0, 0] [6, 6] [0, 0]
[4, 6] [3, 3] [2, 2] [1, 3]
[4, 6] [0, 0] [1, 3] [0, 4]

(:,:,3)= (:,:,4)=
[0, 0] [0, 3] [0, 4] [1, 3]
[0, 0] [3, 6] [4, 7] [0, 0]
[0, 0] [4, 4] [0, 0] [0, 0]
[3, 3] [2, 2] [3, 5] [2, 4]

[4, 4] [0, 3] [2, 5] [3, 3]
[0, 4] [0, 6] [0, 3] [0, 0]
[0, 4] [0, 4] [0, 0] [0, 0]
[2, 2] [0, 0] [0, 0] [0, 0]

Table 4
Sharp integer bounds of the 4×4×4 Table 3.

marginals and conditionals in the estimation of Bayes net models described
in algebraic terms by Garcia et al. [27], especially when all variables are
categorical. In such settings, we replace an omnibus log-linear model by a
series of linear log-odds or logit models corresponding to a factorization of
the joint probabilities into a product of conditional distributions and there
is an interesting issue of whether we can use any reduction via minimal
sufficient statistics to exploit the ideas that follow.

To extend the ideas from the preceding section, we consider a subset
a of K = {1, ..., k} and denote by na and pa the vectors of marginal
counts and probabilities for the variables in a, respectively, of dimension
da =

�
i∈a di. If a and b are two disjoint subsets of K, we denote by nab

and pab the corresponding marginal quantities for the variables in a ∪ b.
Provided that the entries of nb are strictly positive, we define the array
of observed conditional proportions of a given b by na|b = nab/nb, and
the array of conditional probabilities of a given b by pa|b = pab/pb, where
pb > 0.

When k = 2, so that a = {1}, b = {2}, by any of the following sets of
distributions uniquely identifies the joint distribution: (1) pa|b and pb|a, (2)
pa|b and pb, or (3) pb|a and pa. Cell entries can be zero as long as we do not
condition on an event of zero probability. Sometimes the sets {pa|b,pa} and
{pb|a,pb} uniquely identify the joint distribution. The following result, due
to Slavkovic [37] and described in Slavkovic and Fienberg [39], characterizes
this situation for a generalization to a k-way table.

Theorem 3.1. (Slavkovic(2004)) Consider a k-way contingency table
and a pair of matrices T = {pa|b,pa}, where a, b ⊂ {1, . . . , k} and a∩b = ∅.
If the matrix of conditional probabilities has full rank, and da ≥ db, then T
uniquely identifies the marginal table of probabilities pab.

Often, there are multiple realizations of the joint distribution for n, i.e.,
there is more than one table that satisfies the constraints imposed by them.
Slavkovic [37], and Slavkovic and Fienberg [39] describe the calculation of
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bounds given an arbitrary collection of marginals and conditionals. They
use linear programming (LP) and integer programming (IP) methods and
discuss potential inadequacies in treating conditional constraints via LP.
These results rely on the fact that any k-way table satisfying compatible
marginals and/or conditionals is a point in a convex polytope defined by a
system of linear equations induced by released conditionals and marginals.

If a cell count is small and the upper bound is close to the lower bound,
an intruder intent on learning about individuals represented in a table of
counts knows with a high degree of certainty that there is only a small
number of them possessing the characteristics corresponding to that cell.
This may pose a risk of disclosure of the identity of these individuals. For
example, equation (2.1) gives the bounds when all that is released are the
two one-way marginals in a two-way table. When we have a single marginal
or a single conditional, the cell’s probability is bounded below by zero and
above by a corresponding marginal or a conditional value. This translates
into bounds for cell counts provided we know the sample size N . When
we are working with released marginals we know N , but when we work
only with conditionals this is an extra piece of information that needs to
be provided to rescale the proportions to infer possible values for tables of
counts.

When the conditions of Theorem 3.1 are not satisfied, we can obtain
bounds for cell entries, and in some two-way cases there are closed-form
solutions. Slavkovic [37] and Fienberg and Slavkovic [39] derive such closed-
form solutions for 2 × J tables. Then the corresponding marginal and
conditional cell probabilities are denoted as pi+ =

�
j pij for pa, i ∈ a,

p+j =
�

i pij for pb, j ∈ b, and pi|j = pij/p+j for pa|b, respectively. The
closed form solutions for the pij ’s rely on solving a linear programming
problem via the simplex method and are given in the following theorem.

Theorem 3.2. Consider a 2 × J contingency table and a pair of
matrices T = {pa|b,pa}, i ∈ a, j ∈ b. Let

UB1 = pi|j

pi+ −max
r �=j

{pi|r}

pi|j −max
r �=j

{pi|r}
,

and

UB2 = pi|j

pi+ −min
r �=j

{pi|r}

pi|j −min
r �=j

{pi|r}
.

Then there are sharp upper bounds (UB) and lower bounds (LB) on the cell
probabilities, pij given by

UB =






UB1 if pi+ ≥ pi|j

UB2 if pi+ < pi|j ,
(3.1)
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and

LB =






max{0, UB2} s.t. UB2 ≤ UB if pi+ ≥ pi|j

max{0, UB1} s.t. UB1 ≤ UB if pi+ < pi|j .
(3.2)

Given a set of low dimensional tables with nicely rounded conditional
probability values, these bounds will be sharp. For higher dimensions, lin-
ear approximations of the bounds may be far from the true sharp bounds
for the table of counts, and thus may mask the true disclosure risk. To
calculate sharp IP bounds, we need either nicely rounded conditional prob-
ability values, which rarely occur in practice, or we need the observed cell
counts. Thus if the observed counts are considered sensitive, the database
owner is the only one who can produce the sharp IP bounds in the case of
the conditionals, e.g., see Slavkovic and Smucker [38].

Using algebraic tools for determining Gröbner and Markov bases, we
can find feasible solutions to the constrained maximization/minimization
problem. Some advantages of this approach are that (1) we obtain sharp
bounds when the linear program approach fails, and (2) we can use it to de-
scribe all possible tables satisfying costraints imposed by information given
by T . In particular, a set of minimal Markov bases allows us to build a con-
nected Markov chain and perform a random walk over all the points in the
fiber that have the same fixed marginals and/or conditionals. Thus we can
either enumerate or sample from the space of tables via Sequential Impor-
tance Sampling (SIS) or Markov Chain Monte Carlo (MCMC) sampling,
e.g., see Chen et al. [5]. Some disadvantages of the algebraic approach are
that (1) calculation of Markov bases are computationally infeasible even
for tables of small dimension, and (2) for conditionals, Markov bases are
extremely sensitive to rounding of cell probabilities. Slavkovic [37] provides
a description of calculation and structure of Markov bases given fixed con-
ditionals for two-way tables. In this setting, the design matrix A does not
rely on a log-linear model, but is a m×d constraint matrix A where d is the
number of cells and m the number of linear constraints induced by T and
the row of ones induced by the fixed sample size N ; the corresponding m

dimensional vector t−1 =
�

N 0
�
. The reported results in the examples

below rely on this methodology.

4. Two Examples. Here we illustrate several of the results described
in the preceding sections in the context of two examples of sparse contin-
gency tables. The examples illustrate the limits of current computational
approaches. To simplify the description of log-linear models we use the
common short-hand notation for marginals, referring to the variables com-
prising them. For example, in a 3-way table involving variables A, B, and
C, we denote the 3 2-way marginals as [AB], [AC], and [BC].

4.1. Example: Genetics Data. Edwards [19] reports on an analysis
of genetics data in the form of a sparse 26 contingency table given in Table 5.
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The six dichotomous categorical variables, labeled with the letters A-F,
record the parental alleles corresponding to six loci along a chromosome
strand of a barely powder mildew fungus, for a total of 70 offspring. The
original data set, described in [4], included 37 loci for 81 offsprings, with
11 missing data—a rather sparse table.

1 2 D
1 2 1 2 E

1 2 1 2 1 2 1 2 F
1 1 1 0 0 0 0 3 0 1 0

2 0 1 0 0 0 1 0 0
2 1 1 0 1 0 7 1 4 0

2 0 0 0 2 1 3 0 11
2 1 1 16 1 4 0 1 0 0 0

2 1 4 1 4 0 0 0 1
2 1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0
A B C

Table 5
Cell counts for the dataset analyzed by Edwards [19]. Data publicly available at

http: // www. hypergraph. dk/ .

For the model implied by fixing all the 2-way margins, the MLE is
nonexistent because there is one null entry in the [AB] margins. Using
polymake [28], we found that the marginal cone for this model has 116,764
facets, each corresponding to a different pattern of sampling zeros causing
nonexistence of the MLE , but only 60 of them correspond to null margins.
Table 6 displays the facial set associated to one of these facets. The facet
of the marginal cone containing in its relative interior the null margins
observed for the Table 5 is, in turn, a polyhedral cone with 11,432 facets.

Table 7 shows the set Zt obtained when we release three marginals:
[ABCD][CDE][ABCEF]. The cells marked with a ‘0’ correspond to values
constrained to be zero, the ‘+’ entries are cells for which the integer lower
bound is positive, and the ‘+0’ cells indicate a zero lower integer bound.
The fiber in this case consists of 30 tables.

Proposition 2.1 is about LP and not ILP. In fact, null integer upper
bounds for a set of cells do not imply that the MLE does not exist. In fact,
Table 8 shows a set of sharp integer upper and lower bounds for a model
for which the MLE exists—espite the fact that there exist strictly positive
real-valued tables in the fiber determined by the prescribed margins, there
are cells, highlighted in boldface, for which no positive integer entries can
occur. Although the MLE is well defined, many estimated cell mean values
are rather small: 28 out of 64 values were less than 0.01 and only 14 were

http://www.hypergraph.dk/
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1 2 D
1 2 1 2 E

1 2 1 2 1 2 1 2 F
1 1 1 0 + + + 0 0 + 0

2 0 0 + + 0 0 0 0
2 1 0 0 0 0 0 0 0 0

2 0 0 + 0 0 0 0 0
2 1 1 0 + 0 0 + + + 0

2 0 + + + 0 0 + 0
2 1 0 0 0 0 + 0 0 0

2 + + + 0 + 0 + 0
A B C

Table 6
Example of a 26 sparse table with a nonexistent MLE for the model specified by

fixing all 2-way margins. The ’+’ signs indicate cells in a facial set corresponding to
one facet of the marginal cone.

bigger than 1. For such small estimates, which correspond mostly to the
cells for which the upper and lower integer bound is zero, the standard
error is clearly very large. In fact, it is reasonable to expect that cells for
which the maximal integer entries compatible with the fixed margins are
zero will correspond to cell estimates with large standard errors. In this
sense, cell bounds and maximum likelihood inference are strongly linked.

1 2 D
1 2 1 2 E

1 2 1 2 1 2 1 2 F
1 1 1 0 0 0 0 + 0 + 0

2 0 + 0 0 0 + 0 0
2 1 +0 +0 + 0 + +0 + 0

2 +0 +0 0 + +0 + 0 +
2 1 1 + +0 + 0 +0 +0 +0 0

2 +0 + +0 + +0 +0 +0 +0
2 1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0
A B C

Table 7
Zero patterns when the margins [CDE], [ABCD], [ABCEF] are fixed.

4.2. Example 2: Data from the 1993 U.S. Current Population
Survey. Table 9 describes data extracted from the 1993 Current Popula-
tion Survey. Versions of these data have been used previously to illustrate
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1 2 D
1 2 1 2 E

1 2 1 2 1 2 1 2 F

1 1 1 [0,1] [0,0] [0,2] [0,0] [1,4] [0,1] [0,2] [0,1]
2 [0,0] [0,2] [0,0] [0,2] [0,1] [0,2] [0,1] [0,1]

2 1 [0,1] [0,0] [0,2] [0,0] [6,9] [0,1] [1,4] [0,1]
2 [0,0] [0,1] [0,0] [0,2] [0,1] [1,4] [0,1] [9,12]

2 1 1 [15,18] [0,1] [0,4] [0,1] [0,1] [0,0] [0,1] [0,0]

2 [0,1] [2,5] [1,2] [1,5] [0,0] [0,1] [0,0] [0,1]
2 1 [0,1] [0,0] [0,2] [0,1] [0,1] [0,0] [0,1] [0,0]

2 [0,0] [0,1] [0,1] [0,2] [0,0] [0,1] [0,0] [0,1]
A B C

Table 8
Exact upper and lower bounds for the model obtained by fixing all positive 3-way

margins.

several other approaches to confidentiality protection. The resulting 8-way
table contains 2880 cells and is based on 48,842 cases; 1185 cells approx-
imately 41%, contain 0 count cells. This is an example of a sparse table,
too often present in practice, which poses significant problems in the model
fitting and estimation. Almost all lower level margins (e.g., 2-way margins)
contain 0 counts. Thus the existence of maximum likelihood estimates is
an issue. These zeros propagate into the corresponding conditional tables.

Variable Label Categories
Age (in years) A < 25, 25− 55, > 55
Employer Type (Empolyment) B Gov, Pvt, SE, Other
Education C <HS, HS, Bach, Bach+, Coll
Marital status (Marital) D Married, Other
Race E White, Non-White
Sex F Male, Female
Hours Worked (HrsWorked) G < 40, 40, > 40
Annual Salary (Salary) H < $50K, $50K+

Table 9
Description of variables in CPS data extract.

From disclosure risk perspective we are interested in protecting cells
with small counts such as “1” and “2”. There are 361 cells with count of 1
and 186 with count of 2. Our task is to reduce a potential disclosure risk
for at least 19% of our sample, while still providing sufficient information
for a “valid” statistical analysis.

To alleviate estimation problems, we recoded variables C and G from 5
and 3 categories respectively to 2 categories each yielding a reduced 8-way
table with 768 cells. This table is still sparse. There are 193 zero count
cells, or about 25% of the cells. About 16% of cells have high potential
disclosure risk; there are 73 cells with counts of 1 and 53 with counts of 2.
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For this table we find two reasonable log-liner models
1: [ABCFG][ACDFG][ACDGH][ADEFG],
2: [ACDGH][ABFG][ABCG][ADFG][BEFG][DEFG],

with goodness-of-fit statistics G
2 = 1870.64 with 600 degrees of freedom

and G
2 = 2058.91 with 634 degrees of freedom, respectively.

Model 1 is a decomposable graphical log-linear model whose minimal
sufficient statistics are the released margins. We first evaluate if these five-
way marginal tables are safe to release by analyzing number of cells with
small counts. Most of the cell counts are large and do not seem to present an
immediate disclosure risk. Two of the margins are potentially problematic.
The marginal table [ABCFG] has 1 cell with a count of “5”, while the
margin [ACDGH] has a low count of “4” and two cells with a count of “8”;
e.g., see Table 10. Even without any further analysis, most agencies would
not release such margins. Because we are fitting a decomposable model,
this initial exploratory analysis reveals that there will be at least one cell
with a tight sharp upper bound of size “4”. Now we investigate if these
margins are indeed safe to release accounting for the log-linear model we
can fit and the estimates they provide for the reduced and full 8-way tables.

A 1 2 3
C 1 2 1 2 1 2

D G H
1 1 1 198 139 943 567 2357 2225

2 11 19 240 715 1009 3781
2 1 246 144 765 294 3092 2018

2 8 14 274 480 1040 2465
2 1 1 2327 2558 835 524 2794 3735

2 8 14 51 105 114 770
2 1 1411 1316 617 359 3738 3953

2 4 15 32 68 78 372

Table 10
Marginal table [ACDGH] from 8-way CPS table.

Model 1 is decomposable and thus there are closed-form solutions for
the bounds given the margins. Almost all lower bounds are 0. As expected
from the analysis above, the smallest upper bound is 4. There are 16 such
cells, of which 4 contain counts of “1” and rest contain “0”. The next
smallest upper bound is 5, for 7 “0” cell counts and for 1 cell with a count
of “5”. The 5 cells with counts of “1” have the highest risk of disclosure.
The next set of cells with a considerably high disclosure risk are cells with
an upper bound of size 8. There are 32 such cells (23 contain counts of
“0”, 4 contain counts of “1”, 3 contain counts of “2”, and 2 contain counts
of “3”). If we focus on count cells of “1” and “2”, with the release of this
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Model 1 Model 2
Difference 0 1 2 3 4 5 0 1 2 3 4 5
Cell count
0 226 112 66 52 69 62 192 94 58 40 36 26
1 - 12 15 14 13 20 - 10 8 6 2 10
2 - - 1 3 8 4 - - 2 2 4 4
3 - - - 1 4 2 - - - 0 0 0

Table 11
Summary of the differences between upper and lower bounds for small cell counts

in the full 8-way CPS table under Model 1 and under Model 2.

model we directly identified 12 out of 126 sensitive cells.
If we fit the same model to the full 8-way table with 2,880 cells, there

are 660 cells with difference in bounds less than equal to 5, with all lower
bounds being 0. Most of these are “0” cell counts; however, a high disclo-
sure risk exists for 74 cells with count of “1”, 16 cells with cell count equal
“2”, and 7 cells with counts of “3”; see the summary in Table 11. Thus
releasing the margins corresponding to Model 1 poses a substantial risk of
disclosure.

Model 2 is a non-decomposable log-linear model and it requires an
iterative algorithm for parameter estimation and extensive calculations for
computing the cell bounds. This model has 6 marginals as sufficient statis-
tics. The 5 4-way margins all appear to be safe to release with the smallest
count of size “46” appearing in cell (1,4,1,1) of the margin [ABFG], but
5-way margin [ACDGH] is still problematic.

We focus our discussion only on cells with small counts, as we did for
the Model 1. Since Model 2 is non-decomposable, no closed-form solutions
exist for cell bounds, and we must rely on LP, which may not produce sharp
bounds. In this case this was not an issue. For the reduced 8-way table,
all lower bounds are 0 and the minimum upper bound again is 4. There
are 16 cells with an upper bound of 4, of which four cells have count “1”,
and the rest are “0”. The next smallest upper bound is 8, and there are 5
such cells with counts of “1”, 4 cells with counts of “2”, and 3 cells with
counts of “3”. With these margins, in comparison to the released margins
under Model 1, we have eliminated the effect of the margin [ABCFG], and
reduced a disclosure risk for a subset of small cell counts; however, we did
not reduce the disclosure risk for the small cell counts with the highest
disclosure risk. For the full 8-way table, we compare the distribution of
small cell bounds for the small cell counts under the two models; see Table
11. There are no cells with counts of “3” that have very tight bounds.
For the cells with counts of “2”, the number of tight bounds have not
substantially decreased (e.g., 16 under Model 1 vs. 12 under Model 2), but
there has been a significant decrease in the number of tight bounds for the
cells with count of “1” (e.g., from 74 under Model 1 to 36 under Model 2).

In theory we could enumerate the number of possible tables utilizing
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A 1 2 3
C F G
1 1 1 1128 740 1893

2 552 502 2271
2 1 1416 1329 4381

2 1117 1186 5677
2 1 1 1462 525 3069

2 677 334 3039
2 1 1268 1386 7442

2 812 867 5769
Table 12

Upper bounds for [ACFG]

algebraic techniques and software such as LattE [8] or sampling techniques
such as MCMC and SIS [5]. Due to the large dimension of the solution
polytope for this example, however, LattE is currently unable the execute
the computation because the space of possible tables is extremely large.
We have also been unable to fine-tune the SIS procedure to obtain a rea-
sonable estimate except “infinity”. While it is possible to find a Markov
basis corresponding to the second log-linear model, utilizing those for cal-
culating bounds and or sampling from the space of tables is also currently
computationally infeasible.

Based on Model 1, the variables B and H are conditionally indepen-
dent given the remaining 6 variables. Thus we can collapse the 8-way table
to a 6-way table and carry out a disclosure risk analysis on it. The col-
lapsed table has only 96 cells, and there are only three small cell counts,
two of size “2” and one of size “3”, that would raise an immediate privacy
concern. Furthermore, we have collapsed over the two “most” sensitive and
most interesting variables for statistical analysis: Type of Employer and
Income. We do not pursue this analysis here but, if other variables are of
interest, we could again focus on search for the best decomposable model.
With various search algorithms and criteria, out of 32,768 possible decom-
posable models all searches converge to [ACFG][ADEFG], a model with a
likelihood ratio chi-square of G

2 = 144.036 and 36 degrees of freedom.
First, we recall that given only one margin, the lower bounds are all

zero and the upper bound corresponds to the values of the observed margin.
For example, given [ACFG], the smallest upper bound is 502 for the cell
(211112), but for the small counts of “2” the upper bounds are 677 for
(121112) and 1117 for (111122). Table 12 includes all of these upper bound
values. We can carry out a similar analysis for the [ADEFG] margin.

For the decomposable model of interest above, the sharp bounds are
easy to calculate. The upper bound for a particular cell is a minimum of
the relevant marginal counts [ACFG] and [ADEFG]. The lower bound is
the maximum between the 0 count and the value equal to the ([ACFG] +
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[ADEFG]-[AFG]), where the marginal [AFG] is a separator in the decom-
posable model. The smallest bound for the whole table is on the sensitive
cells (121112) with the count of 2; the bound is [0,15]. If we consider
releasing the corresponding conditionals, e.g., [C|AFG] and[DE|AFG], we
would obtain the same sharp bounds! In fact, any conditional that corre-
sponds to the same marginal table and involves all variables of the marginal
table will produce the same sharp bounds, e.g., [AFG|C] would have the
same IP bounds as [ACFG]. The same argument holds for [DE|AFG] and
[ADEFG]. Moreover, since the model is decomposable we can consider the
pieces separately.

The LP relaxation bounds are typically much wider for the condition-
als than for the corresponding margins, however, and the space of tables
is different and often larger. For this example, due to computational com-
plexity we were unable the obtain the counts via LattE.

5. Some Open Statistical Problems and Their Geometry. We
present below a list of open problems that are pertinent to the topics in-
troduced in this article. We purposely formulate them in rather general
terms, as all of the problems pose challenges that are both of theoretical
and computational nature, and we believe are relevant to the mathematical
and statistical audience jointly.

5.1. Patterns for Non-Existence of MLEs.

Problem 5.1. Suppose that d1 is allowed to grow, while keeping k

and d2, . . . , dk fixed. What is the smallest integer d such that the number
different patterns of zeros that lead to the non-existence of MLEs is constant
for d1 > d?

Eriksson et al. [20] posed a related conjecture, and wondered whether
some finite complexity properties of the facial structure of the marginal
cone is related to the finite complexity properties of Markov bases proved
in Santos and Sturmfels [36].

Carrying the algebraic statistical results on existence of MLEs to large
sparse contingency tables in a fashion that allows relatively easy compu-
tational verification has proven to be difficult. Thus we pose the following
challenge:

Problem 5.2. Given a marginal cone CA and a vector of observed
margins t = An, design an algorithm for finding the facial set associated
with t that is computationally feasible for very large, sparse tables.

5.2. Sharp Bounds. Linear programming relaxation methods for the
problem of computing integers bounds for cell entries will often produce
fractional and non-sharp bounds, e.g., for Table 13.

In recent years, researchers became aware of the seriousness of the
integer gap problem defined as the maximum difference between the real
and integer bounds—see Hosten and Sturmfels [31] and Sullivant [43]. A
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relevant example is presented in Table 13. The necessary and sufficient
conditions for null integer gaps given in Sullivant [42] are the geometric
counterpart to similar results by Dobra and Fienberg [13] already existing
in the statistical literature.

1 2 C
1 2 1 2 D

1 1 0 1 1 0
2 1 0 0 0

2 1 1 0 0 0
2 0 0 0 1

A B

Table 13
An example of a table with integer gap of 1.67 for the entry (1, 1, 1, 1) with fixed

2-way margins. For that cell the integer upper bounds is 0. Incidentally, we note that
the MLE is defined and that the fiber contains one table only. Source: Hosten and
Sturmfels [31].

The generalized shuttle algorithm propose by Dobra [11] is based on
a succeeding branch-and-bound approach to enumerate all feasible tables,
thus adjusting the shuttle bounds to be sharpest, and implemented a par-
allel version of the enumerating procedure which permits efficient compu-
tation for large tables. Dobra and Fienberg [16] provide further details
and applications. Because this algorithm substitutes for the traversal of all
lattice points in the convex polytope, and this involves aspects of the exact
distribution without the probabilities, it is not surprising that there are
links with the issues of maximum likelihood estimation. When the margins
correspond to decomposable graphs, the bounds have explicit representa-
tion (see [13]) and the branch and bound component is not needed. When
they correspond to reducible graphs this component effectively works on
the reducible components!

Problem 5.3. Can we formalize the algebraic geometric links for the
bounds problem in a form that scales to large sparse tables?

5.3. Markov Bases Complexity and Gaps in the Fiber. By a
fiber with gaps we mean a fiber in which, for some of the cells entries, the
range of integer values that are compatible with the given margins is not
a finite sequence of integers, but instead contains gaps. In the presence of
such gaps, knowledge of sharp upper and lower integer bounds for the cell
entries cannot be a definitive indication of the safety of a data release. By
construction, Markov bases preserve connectedness in the fiber and thus
they encode the maximal degree of geometric and combinatorial complexity
for all the fibers associated to a given log-linear model. De Loera and
Onn [9] show that the complexity of Markov bases has no bound and thus
there is little hope for an efficient computation of Markov bases for problems
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(:, j, k) = (i, :, k) = (i, j, :) =
2 1 2 0 2 0
1 0 2 0 0 2
1 0 0 2 2 0
0 1 0 2 0 2

2 1 2 3 0 0
2 1 0 0 2 1
0 0 2 1 2 3

2 2 2 2
3 1 1 1
2 2 2 2

Table 14
Margins of a 3×4×6 table with a gap in the entry range for the (1, 1, 1) cell. Source:

De Loera and Onn [9].

of even moderate size, from the theoretical point of view. They also show
in a constructive way that fibers can have large (in fact, arbitrarily large)
gaps, a fact that can be quantified by the degree of the Markov moves.

Problem 5.4. What combinatorial and geometric tools allow us to
assess and quantify gaps in a given fiber?

These open problems have important implications for disclosure lim-
itation methodologies. Table 14 gives an example of an integer gap for a
3×4×6 with fixed 2-way margins. The fiber contains only 2 feasible tables
and the range entry for the first cell is {0, 2}, thus exhibit a gap, since
a value of 1 cannot be observed. In principle, it is possible to generate
examples of tables with arbitrarily disconnected fiber.

Markov bases are data independent, in the sense that they prescribe
all the moves required to guarantee connectedness for any fiber. However,
there are instances which depend on the observed table n, when in fact
some (potentially many) of the moves are not needed: for example when
the observed fiber contains gaps and when the observed margins lie on the
boundary of the marginal cone CA.

Problem 5.5. Is it possible to reduce the computational burden of
calculating Markov bases by computing only the moves that are relevant to
the observed fiber Pt?

5.4. Bounds for Released Margins and Conditionals. The de-
gree of Markov moves for given conditionals is arbitrary in a sense that it
depends on the values of conditional probabilities, that is it depends on
the smallest common divisor of the actual cell counts for a given condi-
tional. In the disclosure limitation context, the database owner who knows
the original cell counts can calculate the sharp LP and IP bounds, and
the Markov bases for given conditionals only subject to the computational
limitations of current optimization and algebraic software. In practice,
however, the conditional values are reported as real numbers and depend-
ing on the rounding point the LP/IP bounds, the moves and thus the fibers
generated for a given table will differ.

Problem 5.6. Characterize the difference between these bases, the
fibers, and bounds due to rounding of the observed conditional probabilities.
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We have observed that the gap in the bounds for the cell counts, and
thus the degree of gap of a given fiber, is more pronounced with condition-
als than with the corresponding marginals. While the sharp bounds on the
cells maybe the same, the fibers differ in their content and size resulting
in different conditional distributions on the space of tables. This has im-
portant implications for exact inference, and disclosure limitation methods
as certain conditionals may release less information than the correspond-
ing margin. Consider a k-way contingency table, and two fibers; one for a
matrix of conditional values pa|b and a second for the corresponding mar-
gin pab where a, b ⊂ {1, ..., k}. The size of the first fiber will be greater
than equal to the size of the second fiber. Also the Markov bases for pa|b
will include all the elements of the moves from fixed margin pab plus some
additional ones. These observations lead to the following challenge:

Problem 5.7. Characterize the difference of two fibers, one for a
conditional probability array and the other for the corresponding margin,
and thus simplify the calculation of Markov bases for the conditionals by
using the knowledge of the moves of the corresponding margin.

This is related to the characterization of Theorem 3.2 when pa|b and pa do
not uniquely identify the marginal table pab.
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[41] B. Sturmfels (1995). Gröbner Bases and Convex Polytope, American Mathemat-
ical Society, University Lecture Series, 8.

[42] S. Sullivant (2006). Compressed polytopes and statistical disclosure limitation,
Tohoku Mathematical Journal, 58(3), 433-445.

[43] S. Sullivant (2005). Small contingency tables with large gaps, SIAM Journal of
Discrete Mathematics, 18(4), 787–793.

[44] G.M. Ziegler (1998). Lectures on Polytopes, Springer-Verlag, New York.


