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Abstract. The p1 model is a directed random graph model used to describe
dyadic interactions in a social network in terms of effects due to differential
attraction (popularity) and expansiveness, as well as an additional effect due
to reciprocation. In this article we carry out an algebraic statistics analysis
of this model. We show that the p1 model is a toric model specified by a
multi-homogeneous ideal. We conduct an extensive study of the Markov bases
for p1 models that incorporate explicitly the constraint arising from multi-
homogeneity. We consider the properties of the corresponding toric variety
and relate them to the conditions for existence of the maximum likelihood and
extended maximum likelihood estimator. Our results are directly relevant to
the estimation and conditional goodness-of-fit testing problems in p1 models.

1. Introduction

The study of random graphs is an active area of research in many fields, in-
cluding mathematics, probability, biology and social sciences. In the social network
literature, the nodes of the network represent population units and the edges repre-
sent relationships among individuals. Thus, prescribing a probability distribution
over a network is essentially a way of encoding the dynamic of interactions and
behavior among individuals in a given population. For a review, see [12].

One of the earlier and most popular statistical models for social networks is
the p1 model of Holland and Leinhardt, described in their 1981 seminal paper [15].
In a p1 model the network is represented as a digraph in which, for every pair of
nodes {i, j}, or dyad, one can observe one of four possible dyadic configurations:
a directed edge from i to j, a directed edge from j to i, two directed edges, or no
edges between i and j. Each dyad is in any of these configurations independently
of all the other dyads. Quoting from [15], the probability distribution over the
entire network depends on various parameters quantifying the “attractiveness” and
“productivity” of the individual nodes, the “strength of reciprocity” of each dyad
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and the network “density,” or overall tendency to have edges. See the next section
for details.

Despite its simplicity and interpretability, and despite being a special case of
the broader and well studied class of log-linear models, e.g., [10, 11], the p1 model
poses extraordinary challenges of both theoretical and practical nature. Indeed,
first and foremost, the number of network parameters depends on the size of the
network, so that, as the population size grows, the model complexity also increases.
This feature renders the p1 model, as well as virtually any other network model,
unlike traditional statistical models, whose complexity is fixed and independent of
the sample size. Second, as assumed by Holland and Leinhardt in their original
paper [15], and as is customary in social network analysis, statistical inference for
the p1 model is typically made on the basis of one realization of the network, which
amounts to one observation per dyad.

In this article, we revisit the Holland-Leinhardt p1 model using the tools and
language of algebraic statistics. See, e.g., [7, 16] and [8]. For the class of p1
models at hand, we identify the probabilities of each of the 2n(n− 1) possible dyadic
configurations with the indeterminates of a multi-homogeneous toric ideal. Our goal
is to investigate the Markov bases for p1 by computing a minimal generating set of
this ideal first and then by removing basis elements that violate the condition of one
observation per dyad. To our knowledge, this is the first time in the Markov bases
literature that sampling constraints of this form, known in statistics as product
Multinomial sampling schemes, have been directly incorporated in the study of
Markov bases. Our results prescribe a set of rules for creating Markov moves that
are applicable to network data and offer significant efficiency improvements over
existing methods for generating Markov bases.

The paper is organized as follows. In Section 2 we describe in detail the p1
model, its statistical properties and the statistical tasks of estimation and testing
that motivate our work. In particular, we consider three different flavors of the p1
model, of increasing complexity. In Section 3 we embark on an exhaustive study of
the Markov bases for p1 models. As we mentioned above, the constraint that there
is only one observation per dyad makes our analysis unusually difficult.

2. The Holland-Leindhardt p1 model

We consider a directed graph on the set of n nodes. The nodes correspond to
units in a network, such as individuals, and the edges correspond to links between
the units. We focus on dyadic pairings and keep track of whether node i sends
an edge to j, or vice versa, or none, or both. Let pij(1, 0) be the probability of
i sending an edge toward j, and let pij(0, 1) the probability of j sending an edge
toward i (thus, 1 denotes the outgoing side of the edge). Further, pij(1, 1) is the
probability of i sending an edge to j and j sending an edge to i, while pij(0, 0) is
the probability that there is no edge between i and j. Thus,

(2.1) pij(0, 0) + pij(1, 0) + pij(0, 1) + pij(1, 1) = 1,
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for each of the
(n
2

)
pairs of nodes {i, j}. The Holland-Leinhardt p1 model is given

as follows (see [15]):

(2.2)

log pij(0, 0) = λij

log pij(1, 0) = λij + αi + βj + θ
log pij(0, 1) = λij + αj + βi + θ
log pij(1, 1) = λij + αi + βj + αj + βi + 2θ + ρij .

The real-valued variables θ, αi, βi, ρij and λij for all i < j are the model parameters.
The parameter αi controls the effect of an outgoing edge from i, the parameter βj

the effect of an incoming edge into j, and ρij the added effect of reciprocated edges
(in both directions). The “density” parameter θ quantifies the overall propensity
of the network to have edges. Finally, λij is just a normalizing constant to ensure
that (2.1) holds for each dyad {i, j}.

We take note here of a basic, yet a rather fundamental feature of our settings
that apply to p1 models as well as to many other statistical models for networks:
data become available in the form of one observed network. Even though for each
pair of nodes {i, j}, the four probabilities pij(•, •) are strictly positive according to
the defining equations (2.2), each dyad can be observed in one and only one of the
4 possible states.

We study the following special cases of the general p1 structure:

(1) ρij = 0: no reciprocal effect.
(2) ρij = ρ: constant reciprocation.
(3) ρij = ρ+ ρi + ρj : edge-dependent reciprocation.

For a network on n nodes, we represent the vector of 2n(n − 1) dyad prob-
abilities as p = (p12, p13, . . . , pn−1,n) ∈ R2n(n−1), where, for each i < j, pij =
(pij(0, 0), pij(1, 0), pij(0, 1), pij(1, 1)) ∈ ∆3, with ∆3 the standard simplex in R4.

As usual in algebraic statistics, the p1 model is defined to be the set of all can-
didate probability distributions that satisfy the Holland-Leinhardt equations (2.2).
By definition, the p1 model is log-linear; that is, the set of candidate probabilities p
is such that log p is in the linear space spanned by the rows of a matrix A, which is
often called the design matrix of the model. Indeed, the design matrix encodes a ho-
momorphism between two polynomial rings: ϕn : C[pij(a, b)] → C[λij ,αi,βi, θ, ρij ],
with i < j ∈ {1 . . . n} and a, b ∈ {0, 1}, induced by

pij(a, b) $→ λijα
a
i α

b
jβ

b
i β

a
j θ

a+bρmin(a,b)
ij

where a, b ∈ {0, 1}, and we consider parameters λij , αi, βi, ρij and θ for i, j ∈
{1, . . . , n} as unknowns. The design matrix A simply describes the action of ϕn on
the probabilities pij(•, •). The columns of A are indexed by pij ’s and its rows by the
model parameters. The entries of the design matrix are either 0 or 1; there is a 1 in
the (r, c)-entry of the matrix if the parameter indexing row r appears in the image
of the pij indexing the column c. For example, in the case ρij = 0, the matrix A is
of size (2n)× (3

(n
2

)
). We will create the design matrices in a systematic way: the

rows will always be indexed by λij ,α1, . . . ,αn, β1, . . . ,βn, θ, ρij lexicographically
in that order. The columns will be ordered in the following way: first fix i and j in
the natural lexicographic ordering; then, within each set, vary the edge directions
in this order: (0, 0), (1, 0), (0, 1), (1, 1). Examples can be found in Section 3.2.
Furthermore, it is easy to see that the design matrix for the network on n nodes
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will consist of several copies of the 2-node matrix, placed as a submatrix of in those
rows and columns corresponding to all 2-node subnetworks.

Let ζ = (ζ1, . . . , ζd) denote the vector of model parameters, whose dimension
d depends on the type of restrictions on the p1. Then, one can readily verify that
the Holland-Leinhardt equations have the log-linear representation log p = A"ζ,
or, equivalently, letting ak,l and pk be the (k, l) entry of A and the k-th element of

p, respectively, pk =
∏d

l=1(ak,l)
ζl .

2.1. Algebraic statistical challenges in p1 models. To provide some con-
text and motivation for our analysis, we now briefly review some fundamental
statistical tasks for the analysis of p1 models. We point out that these problems
still remain in part unsolved.

Denote by MA the p1 model, that is, the set of points satisfying the Holland-
Leinhardt equations (2.2). Notice that MA is a set in the positive orthant of
R2n(n−1) of dimension rank(A). Let Xn ⊂ R2n(n−1) be the sample space, that is,
the set of all observable networks on n nodes. Notice that |Xn| = 4n(n−1). We
will write every point x in the sample space X as x = (x12, x13, . . . , xn−1,n), where
each of the

(n
2

)
subvectors xij is a vertex of ∆3. Probabilistically, each xij is the

realization of a random vector in R4 having multinomial distribution with size 1
and class probabilities p0ij ∈ ∆3, where p0 = (p012, p

0
13, . . . , p

0
n−1,n) is an unknown

vector in MA. Furthermore, (2.2) implies the multinomial vectors representing the
dyad configurations are mutually independent.

Once a network x ∈ Xn has been observed, statisticians are interested in the
following interrelated fundamental problems:
1) estimation problem: to estimate the unknown vector p0 ∈ MA;
2) goodness-of-fit problem: to test whether the p1 model MA can be considered
appropriate, i.e. whether p0 ∈ MA.

To tackle the first problem, the most commonly used method is maximum
likelihood estimation. Specifically, the maximum likelihood estimator, or MLE, of
p0 is given by

(2.3) p̂ = argmaxp∈MA
(x(p),

where, for a fixed point x ∈ Xn, the likelihood function (x : MA → [0, 1] given by

(x(p) =
∏

i<j

(
4∏

k=1

pij(k)
xij(k))

returns the probability of observing the network x as a function of the multinomial
probabilities p ∈ MA. See [17] for more details on maximum likelihood for this
model.

While the estimation problem is relatively well constrained, the problem of
testing for goodness of fit has a much broader scope. A typical goodness-of-fit
testing proceeds through the following steps:
1) Compute the MLE p̂ as defined in (2.3).
2) Compute the goodness-of-fit statistic GF (x). This quantity measures how close
the MLE is to the observed network, or, using a statistical jargon, “how well the
model MA fits the data x.” Among the most commonly used statistics are Pearson’s
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χ2 and the likelihood ratio statistic:

∑

i<k

4∑

k=1

(p̂ij(k)− xij(k))
2

p̂2ij(k)
and

∑

i<k

4∑

k=1

xij(k) log(
xij(k)

p̂ij(k)
),

respectively.
3) Reject the assumption that p0 ∈ MA if the goodness-of-fit statistic used in step
(2) is statistically large.

Step (3) above is clearly the most difficult, as there is no generally valid recipe
for deciding when GF (x) is too large, one of the reasons being that the goodness-
of-fit statistic is itself a random variable. In practice, it is customary to declare
a model a poor fit if GF (x) is greater than a deterministic threshold obtained
based on asymptotic approximations. Despite their widespread use, for the present
problem these approximations have no theoretical justification, e.g., [13], and can,
in fact, be very poor.

Markov bases provide an alternative, non-asymptotic approach to performing
goodness-of-fit tests that has gained much popularity in recent years. Let t = Ax
denote the vector of margins, or sufficient statistics, corresponding to the observed
network. Let Tt = {x′ ∈ Xn : Ax′ = t} ⊂ Xn be the fiber of t. From statistical
theory, e.g., [2], all the networks in belonging to the same fiber will produce the same
MLE and are, therefore, equivalent from the inferential standpoint. Consequently,
if x is the observed network and t the associated sufficient statistic, one can decide
whether the model MA provides a good fit if the quantity

(2.4) αx =
|{x′ ∈ Tt : GF (x′) > GF (x)}|

|Tt|
is statistically large. Notice that αx is the fraction of networks in the fiber at t whose
goodness-of-fit statistic value is larger than the value at the observed network x.
Heuristically, if αx is large, then p̂ is closer to the observed network than most of
the other points in the same fiber, thus implying that the model fits really well.

Despite its appeal, this methodology is rarely feasible due to the high computa-
tional cost of determining the fiber. Thus, rather than computing the fiber exactly,
one can attempt to estimate αx by performing a sufficiently long random walk over
Ft, as follows. A Markov basis for MA is set of vectors M = {f1, . . . , fM} ⊂
Z2n(n−1) such that

(i) M ⊂ kernel(A);
(ii) for each observable margin t and each x, x′ ∈ Tt, there exists a sequence

(ε1, fi1), . . . , (εN , fiN ) (with N depending on both x and x′), such that
εj ∈ {−1, 1} for all j and

x′ = x+
N∑

j=1

εjfij , x+
a∑

j=1

εjfij ∈ Xn for all a = 1, . . . , N.

Notice that Markov bases are not unique. If a Markov basis is available, then, for
any observable network x with sufficient statistics t = Ax, it is possible to estimate
αx by walking at random inside the fiber Tt according to the following algorithm:

(1) set k=0 and set xold = x;
(2) at every step, starting from the current position xold,

(a) randomly choose a vector f ∈ M and a number ε ∈ {−1, 1};
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(b) if xold + εf ∈ Xn, move to xnew = xold + εf ∈ Xn, otherwise stay at
xnew = xold;

(3) if GF (xnew) is larger than GF (x) set k = k+1;
(4) repeat steps (2) and (3) K times.

Provided that the algorithm is run for a sufficiently long time (i.e. K is large
enough), the number k/K is an accurate estimate of αx. See [7] for details and
variants of the basic Markov basis algorithm described above.

3. Markov bases of p1 models

In this section we study the properties of Markov bases for the three versions
of the p1 model described in Section 2.

Our analysis presents certain aspects that set it apart from most of the existing
literature on Markov bases. Indeed, the traditional algebraic geometry machinery
generates Markov bases that are “universal”, in the sense of depending only on
the design matrix A, and not the sample space and its properties. As a result,
Markov bases tend to be very large even for design matrices of moderate size. In
contrast, as we noted above, the sample space for network data is very highly
constrained, since each dyad can only be observed in one and only one of the four
possible configurations. Indeed, many of the basis elements of any Markov bases
are not applicable, since they violate this basic constraint of the data. Thus, once
we find the Markov bases, we still need to be careful in identifying what elements
are relevant to our data and in removing the moves that are not applicable. To our
knowledge, this is the first time this issue has been addressed in the Markov bases
literature.

On the other hand, we are able to decompose every Markov basis element
using certain “basic” moves (Theorem 3.6), which are, as we will see, statistically
meaningful by definition. The key idea is to decompose the toric ideal of the p1
model using ideals which are known and easier to understand. Namely, ignoring
the normalizing constants λij reveals a connection between p1 models and toric
varieties which are associated to certain graphs. These have been studied by the
commutative algebra and algebraic geometry community, specifically in [19, 5].
We will use this connection to explain the form of Markov bases of p1 models. In
terms of ideal generators for the p1 model, re-introducing the normalizing constants
does add another level of difficulty. However, in terms of moves on the network,
we can avoid this difficulty by exhibiting the decomposition of the moves (although
inapplicable in terms of ideal generators) using well-understood binomials arising
from graphs. This approach reduces the complexity and size of Markov moves.
In addition, it allows us to bypass the study of those basis that elements are not
applicable due to the constraints described above.

3.1. The toric ideal of the p1 model. Recall that the model consists of the
points of the probability simplex that are in the row space of the design matrix.
It follows that our model is, in fact, the positive part of the variety that is (the
closure of) the image of the map ϕn. For more discussion on the geometry of the
model, see [17].

To understand the model, we ask for all the polynomial equations that vanish
on all of the points of the model; this set of equations is the defining ideal of the
variety. In the case of log-linear models, the ideal is a toric ideal [18]. It can be
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computed from the kernel of the design matrix M :

IM = (pu − pv : u− v ∈ kernel(M)) ,

where pu denotes a monomial. Any generating set of the defining ideal IM gives a
Markov basis for our model. This is the Fundamental Theorem of Markov Bases,
e.g., [7], or [8], Theorem 1.3.6. It describes the relations among the pij(•, •), and
can be used for a random walk in any given fiber as describe at the end of the
previous section.

In order to enumerate all networks with the same degree distributions, one
might want to use a Gröbner basis instead. A Gröbner basis is a generating set
of the ideal, usually non-minimal, with some special structure desirable to have
for computations. It is guaranteed to connect all points in a given fiber; every
Gröbner basis is a Markov basis. A Gröbner basis can be made unique by requiring
it to be reduced. There are finitely many reduced Gröbner bases, and the union of
all of them is contained in the set of primitive binomials, called the Graver basis
of the ideal. The Graver basis is generally very hard to compute, but sometimes
easier to describe algebraically, and its structure naturally implies constraints on
the structure of the minimal Markov moves.

Our first goal is to understand the structure of these Markov bases for the
three cases of the p1 model. Even though their size grows rapidly as we increase
the number of nodes, there is quite a lot of structure in these generating sets. In
what follows, we will first illustrate this structure on some small networks.

Let us first fix some notation for the remainder of the paper. Since there are
three cases of the p1 model, we need three different names for the design matrices
of the n-node network. The design matrix depends on the choice of n and ρij :

(1) For the case ρij = 0, the design matrix will be denoted by Zn.
(2) For the constant reciprocation case, i.e. ρij = ρ, the design matrix will be

denoted by Cn.
(3) When edge-dependent reciprocation case, i.e. ρij = ρ+ρi+ρj , the design

matrix will be denoted by En.

3.2. Markov bases of small networks.
3.2.1. Case I: no reciprocation. (ρij = 0)
This is clearly a special case of ρij = ρ, but we treat it here separately. We will

see that, algebraically, it is interesting in its own right.
Let’s start with the simplest nontrivial example: n = 2. The design matrix

Z2 =





1 1 1 1
0 1 0 1
0 0 1 1
0 0 1 1
0 1 0 1
0 1 1 2





λ12

α1

α2

β1

β2

θ

encodes the parametrization ϕ2 of the variety. Its rows are indexed by parame-
ters as indicated, while the columns are indexed by p12(0, 0), p12(1, 0), p12(0, 1),
p12(1, 1). The ideal IZ2 = (p12(1, 0)p12(0, 1) − p12(1, 1)p12(0, 0)) is the principal
ideal generated by one quadric, and thus this single binomial is a Markov basis,
and also a Gröbner basis with respect to any term order. This can be verified by
hand, or using software such as 4ti2 [1].
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Remark 3.1 (From binomials to moves). In general, we can translate bino-
mials to moves in the following way: we will remove all edges that are represented
by the pij ’s in the negative monomial, and add all edges represented by the pij ’s
in the positive monomial. Note that if pij(0, 0) occurs in either, it has no effect:
it says to remove or add the “no-edge”, so nothing needs to be done. However,
there is a reason why pij(0, 0)’s show up in the ideal: the structure of Zn for any
n requires that each binomial in the ideal is homogeneous with respect to the pair
{i, j}. Here, for example, since the positive monomial is of degree two, the negative
monomial has p12(0, 0) attached to it to ensure it also is of degree two.
Thus, the generator of IZ2 represents the following Markov move:

Delete the bi-directed edge between 1 and 2,
and replace it by two edges: (1,2) and (2,1).

However, if we would like to require at most one edge per dyad, then this bino-
mial is meaningless and there are not really any allowable Markov moves. Logically,
the case of no reciprocation somehow contradicts this requirement, since if ρij = 0,
we always get that a bi-directed edge between two nodes is valued the same as two
edges between them. Thus the assumption of only one edge per dyad makes this
problem so much more complicated, as relations like this one for any dyad in an
n-node network will appear in the generating sets of the ideal IZn , but we will never
want to use them.

Next, let n = 3. The toric ideal IZ3 is minimally generated by the fol-
lowing set of binomials: p23(0, 1)p23(1, 0) − p23(1, 1)p23(0, 0), p13(0, 1)p13(1, 0) −
p13(1, 1)p13(0, 0), p12(0, 1)p12(1, 0) − p12(1, 1)p12(0, 0), p12(0, 1)p13(1, 0)p23(0, 1) −
p12(1, 0)p13(0, 1)p23(1, 0). It is interesting to note that the first 3 generators are
precisely the binomials from IZ2 for the three dyads {1, 2}, {1, 3}, and {2, 3}. The
only statistically meaningful generator is the cubic. It represents the following
move:

Replace the edges (1,2), (2,3), (3,1) by (2,1), (3,2), (1,3).

Graphically, it represents the three-cycle oriented two different ways: the positive
monomial represents the cycle (1, 3, 2, 1), while the negative monomial represents
its inverse, (1, 2, 3, 1), as depicted in Figure 3.1.

Figure 3.1. A degree-three move on 3 nodes: dashed edges are
replaced by full edges.

Suppose now that n = 4. A minimal generating set for the ideal IZ4 consists
of 151 binomials: 6 quadrics, 4 cubics, 93 quartics and 48 quintics. Some of these
violate the requirement that each dyad can be observed in only one state. As it
is impractical to write all of these binomials down, we will list just a few of those
that are statistically meaningful (i.e. respect the requirement of at most one edge
per dyad at any time). As expected, the quadrics and the cubics are simply the
generators of IZ3 for the four 3-node subnetworks of the four-node network. As
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we’ve seen, the quadrics are not of interest. The cubics represent the three-cycles.
Here is a list of sample quartics, written in binomial form:

p12(1, 1)p34(1, 1)p23(0, 0)p14(0, 0)− p12(0, 0)p34(0, 0)p23(1, 1)p14(1, 1),

p23(1, 1)p14(1, 1)p13(0, 0)p24(0, 0)− p23(1, 0)p14(1, 0)p13(0, 1)p24(0, 1),

p23(1, 1)p14(1, 1)p12(0, 0)p34(0, 0)− p12(1, 0)p23(1, 0)p34(1, 0)p14(0, 1),

p12(0, 0)p23(1, 1)p34(0, 1)p14(1, 0)− p12(1, 0)p23(1, 0)p34(1, 1)p14(0, 0).

Finally, we list some representative quintics:

p12(0, 0)p23(1, 1)p34(0, 1)p14(0, 1)p24(1, 0)

− p12(0, 1)p23(1, 0)p34(1, 1)p14(0, 0)p24(0, 1),

p12(1, 0)p23(1, 0)p14(0, 0)p13(1, 1)p24(1, 0)

− p12(0, 1)p23(1, 1)p14(1, 0)p13(1, 0)p24(0, 0).

This set of Markov moves is quite more complex then the 10 moves originally
described by Holland and Leinhardt for the 4-node case. We will postpone any
further analysis of these binomials until the next section. For now, let us note that
all of them preserve the in- and out- degree distributions of the nodes in the network.
After we study the other two cases for ρij , we will see a recurring underlying set of
moves which can be used to understand the ideals.

3.2.2. Case II: constant reciprocation. (ρij = ρ)
Now we introduce one more row to the zero-ρ design matrix Zn to obtain the

constant-ρ matrix Cn. Namely, this row represents the constant ρ added to those
columns indexed by pij(1, 1) for all i, j ∈ [n]. It is filled with the pattern 0, 0, 0, 1
repeated as many times as necessary. For example, the design matrix for the 2-node
network is as follows:

C2 =





1 1 1 1
0 1 0 1
0 0 1 1
0 0 1 1
0 1 0 1
0 1 1 2
0 0 0 1





λ12

α1

α2

β1

β2

θ
ρ

In this case the ideal is empty (the kernel of C2 is trivial), which is expected since
the only relation in the case of ρij = 0 required that there is no reciprocation. Here,
the bi-directed edge is valued differently then the two single edges in a dyad; this
is the meaning of the last row of the design matrix.

For the 3-node network, the Markov move consist only of the cubic from the
case ρij = 0: p12(0, 1)p13(1, 0)p23(0, 1)− p12(1, 0)p13(0, 1)p23(1, 0). On a side note,
even the Graver basis consists only of this move and 15 other non-applicable moves
(those which ignore the single-edged dyad assumption).

Let n = 4. The software 4ti2 outputs a minimal generating set of the ideal
IC4 consisting of: 4 cubics, 57 quartics, 72 quintics, 336 binomials of degree 6, 48
of degree 7, and 18 of degree 8. Out of this set, the applicable Markov moves are
the same as in the case ρij = 0 with a few degree-six binomials added, such as:
p12(0, 0)p13(1, 1)p14(1, 1)p23(0, 1)p24(1, 0)p34(0, 0)−
p12(1, 1)p13(0, 1)p14(1, 0)p23(0, 0)p24(0, 0)p34(1, 1).
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3.2.3. Case III: edge-dependent reciprocation. (ρij = ρ+ ρi + ρj)
To construct the design matrix En for this case, we start with the matrix Cn

from the case ρij = ρ, and introduce n more rows indexed by ρ1, . . . , ρn. Every
fourth column of the new matrix, indexed by pij(1, 1), has two nonzero entries: a
1 in the rows corresponding to ρi and ρj . For example, when n = 2, the matrix
looks like this:

E2 =





1 1 1 1
0 1 0 1
0 0 1 1
0 0 1 1
0 1 0 1
0 1 1 2
0 0 0 1
0 0 0 1
0 0 0 1





λ12

α1

α2

β1

β2

θ
ρ
ρ1
ρ2

This is a full-rank matrix so the ideal for the 2-node network is empty.
With n = 3 we get the expected result; the ideal IE3 is the principal ideal

IE3 = (p12(1, 0)p23(1, 0)p13(0, 1)− p12(0, 1)p23(0, 1)p13(1, 0)).

With n = 4 we get the first interesting Markov moves for the edge-dependent
case. The software 4ti2 outputs a minimal generating set of the ideal IE4 consisting
of: 4 cubics, 18 quartics, and 24 quintics. The cubics, as usual, represent re-
orienting a 3-cycle. Similarly some of the quartics represent 4-cycles. A few more
binomials are obtained, namely,

p13(0, 0)p24(0, 0)p14(0, 1)p23(0, 1)− p13(0, 1)p24(0, 1)p14(0, 0)p23(0, 0),

of degree four, and

p13(0, 0)p24(0, 0)p14(0, 1)p12(1, 0)p23(1, 0)− p13(1, 0)p24(0, 1)p14(0, 0)p12(0, 1)p23(0, 0),

of degree five. Note that these two are just representatives; we may, for example,
replace every pij(0, 0) in each of them by pij(1, 1), and get other Markov moves
which are minimal generators of the toric ideal IE4 .

3.3. From the p1 model to an edge subring of a graph. A careful reader
will have noticed a pattern in the moves that have appeared so far. To that end,
let us single out two special submatrices that appear in the design matrices in each
of the two cases:

(1) First, for each case, we consider the matrix of the simplified model ob-
tained from the p1 model by simply forgetting the normalizing constants
λij . Let us denote these simplified matrices by Z̃n, C̃n and Ẽn. Note that
ignoring λij ’s results in zero columns for each column indexed by pij(0, 0),
and so we are effectively also ignoring all pij(0, 0)’s. Hence, the matrices
Z̃n, C̃n and Ẽn have

(n
2

)
less rows and

(n
2

)
less columns than Zn, Cn and

En, respectively;
(2) The second special matrix will be denoted by An and is common to all

three cases. It is obtained from Z̃n, C̃n or Ẽn by ignoring the columns
indexed by pij(1, 1) for all i and j, and then removing any zero rows.
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While these constructions may seem artificial at a first glance, we will soon see that
they are helpful in effectively describing Markov bases for p1 model for any n.

Let us consider an example. The ideal of IA4 is generated by the four cubics
representing the 3-cycles, and six quadrics, each of which represents the following
move for some choice of i, j, k, l ∈ {1, . . . , 4}:
Replace the edges (i,j) and (l,k) by the edges (i,k) and (l,j).

Graphically, the move simply exchanges the heads of the directed arrows while
keeping the tails fixed, as illustrated in Figure 3.2.

Figure 3.2. A degree-two move: dashed edges replaced by full edges.

It turns out that these moves are basic building blocks for the Markov moves
for the 4-node network, decorated with some other edges to ensure homogeneity,
and sometimes this decoration can be quite non-obvious. They depend on the
homogeneity requirements which are there for all three cases of p1, but also on the
way that bi-directed edges might interact with “regular” edges, specially in the case
of no reciprocation. In particular, we will see (Theorems 3.2, 3.4) that the ideals of
the simplified models are a sum of the ideal IAn and another nice toric ideal. It will
then follow that the ideal of our model is a multi-homogeneous piece of the ideal of
the simplified model (Theorem 3.2). Equivalently, the corresponding varieties are
obtained by slicing the simplified-model varieties with hyperplanes. The upshot of
the decomposition is that the Markov moves can be obtained by overlapping simple
moves.

Example 3.1. The following binomial is a generator of the ideal IZ4 :

p12(1, 0)p13(1, 1)p23(1, 0)p24(1, 0)− p12(0, 1)p13(1, 0)p14(1, 0)p23(1, 1).

The move itself, is equivalent to performing a sequence of two simple moves, as
illustrated in Figure 3.3:

replace the cycle (1,2,3,1) by the cycle (1,3,2,1),

followed by

replace the edges (1,3) and (2,4) by the edges (1,4) and (2,3).

Figure 3.3. A sequence of two moves on 4 nodes: dashed edges
are replaced by full edges.

This “decomposition” depends on the fact that reciprocation is zero, so that the
double edge is valued the same as two regular edges.
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The following example illustrates that not all Markov moves are obtained in
the same fashion.

Example 3.2. Consider the case of edge-dependent reciprocation on n = 4
nodes. The following degree-five binomial appears as a minimal generator of the
ideal IE4 , for a choice of 1 ≤ i, j, k, l ≤ n:

pij(1, 0)pik(0, 0)pil(0, 1)pjk(1, 0)pjl(0, 0)− pij(0, 1)pik(1, 0)pil(0, 0)pjk(0, 0)pjl(0, 1).

Clearly this move can be obtained by the following sequence of simple moves, il-
lustrated in Figure 3.4: Replace the edges (l,i) and (j,k) by the edges (l,k) and
(j,i), followed by replace the edges (i,j) and (l,k) by the edges (i,k) and (l,j). Note

Figure 3.4. A sequence of two moves on 4 nodes: dashed edges
are replaced by full edges.

that we do not remove or add the empty edge represented by pij(0, 0); but these
variables are required by homogeneity.

3.4. The toric ideal of the common submatrix An. Focusing on the sub-
matrix An reveals additional structure which can be studied using some standard
algebraic techniques. To that end, we recall the following standard definition [19].

Definition 3.1. Let k be any field (e.g. k = C), G be any graph and E(G)
the set of its edges. If we consider the vertices of G to be variables, then the edges
of G correspond to degree-two monomials in those variables. The ring

k[G] := k[xy | (x, y) ∈ E(G)]

is called the monomial subring or the edge subring of the graph G. Its ideal of
relations is called the toric ideal of the edge subring.

We will be interested in special graphs. Let Gn := Kn,n\{(i, i)}ni=1 be the
complete bipartite (undirected) graph Kn,n on two sets of with n vertices each, but
with the vertical edges (i, i) removed. If we label one set of vertices α1, . . . ,αn and
the other set β1, . . . ,βn, then our graph Gn has edges (αi,βj) for all i (= j. Thus
we are interested in the ring k[Gn] := k[αiβj | (αi,βj) is an edge of Gn].

Lemma 3.1. IAn is the toric ideal of k[Gn].

Proof. Returning to our definition ofAn, we see that it is the incidence matrix
of the graph Gn; that is, the columns of the matrix correspond to the exponents of
the monomials representing the edges of Gn. Thus the claim readily follows by the
definition of the toric ideal of k[Gn] from Section 8.1. in [19]. !

We will use this correspondence to obtain a Gröbner basis of IZn and IEn . But
first, let us introduce one more concept which is crucial to the description of a
Gröbner basis of IAn .
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Definition 3.2. Following [5, 19], we say that a binomial fc arises from a
cycle c of Gn if:
1) c is a cycle of the graph Gn; namely, c is a closed walk on a subset of the vertices
of Gn such hat no vertex is visited twice: c = (αi1 ,βj1 ,αi2 ,βj2 , . . . ,βjk ,αi1),
2) fc is the binomial obtained by placing the variables corresponding to the edges
of the cycle c alternately in one and then the other monomial of fc; that is,
fc := f+

c − f−
c with f+

c := pi1j1(1, 0)pi2j2(1, 0) . . . pik−1jk−1(1, 0)piijk(1, 0) and
f−
c := pi2j1(1, 0)pi3j2(1, 0) . . . pikjk−1(1, 0)pi1jk(1, 0), where for ease of notation we
have let pij(1, 0) = pji(0, 1) if i > j.

There are finitely many cycles in Gn, though they may be nontrivial to enu-
merate. However, we will use this description to provide (theoretically) an explicit
Gröbner basis for our toric ideal. In practice, one can use the program 4ti2 to
obtain the binomials fairly quickly. Gröbner bases, and even Graver bases, for the
ideals IAn are known [5, 19]:

Theorem 3.1 (Bases of the ideal of the common submatrix). Let Gn be the set
of binomials arising from the cycles of the graph Gn. Then Gn is a Gröbner basis
of IAn . Thus it is also a Markov basis of IAn , but not necessarily a minimal one.
Moreover, this set is a Graver basis of the ideal, and it coincides with the universal
Gröbner basis.

Proof (outline). We will use Lemma 3.1 and the appropriate results from
[5, 19] about the toric ideals of bipartite graphs. Note that there is quite a bit of
vocabulary used in the cited results, but we have only defined those terms which
we use in our description of the Gröbner basis in the Theorem. Oshugi and Hibi in
[5] (Lemma 3.1.), and also Villarreal in [19] (Proposition 8.1.2) give a generating
set for IAn . Moreover, Lemma 1.1. of [5] implies that these generators are in
fact the Graver basis for IAn . On the other hand, from Chapter 8 of [19] we
see that precisely these generators in fact correspond to circuits, as well as the
universal Gröbner basis for IAn . It follows that the circuits equal the Graver basis
for our ideal IAn . Avoiding technical details, we will just state that circuits are
a special subset of the Graver basis: they are minimal with respect to inclusion.
The binomials in the Graver basis are given by the even cycles of the graph Gn

(Corollary 8.1.5. in [19]). But since our graph is bipartite, all of the cycles are
even (Proposition 6.1.1. in [19]), so it suffices to say that the Graver basis of IAn

consists of binomials arising from the cycles of the graph Gn. Since the universal
Gröbner basis (which equals Graver basis in this case) is by definition a Gröbner
basis with respect to any term order, the proof is complete. The binomials arising
from the cycles of the graph Gn form the desired set Gn. !

In addition, we have a nice recursive way of constructing the binomials in Gn.

Proposition 3.1. The set Gn consists of precisely the binomials in Gn−1 for all
of the n − 1-node subnetworks, together with the binomials arising from the cycles
of the graph Gn which pass through either αi or βi for each i between 1 and n.

Proof. The last condition can be restated as follows: we are looking for the
primitive binomials f such that for each node i in the random network, there exists
an edge (i, j) such that the variable pij(a, b) appears in one of the monomials of f .
The reduction to the n− 1-node subnetworks is immediate from Proposition 4.13.
in [18]. Namely, the design matrices for the n − 1-node networks are submatrices
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of An, hence the Graver basis of IAn−1 equals that of IAn involving at most n− 1
nodes. !

An example of a degree 5 binomial in IA5 which uses all 5 nodes is

p14(1, 0)p15(0, 1)p23(1, 0)p24(0, 1)p35(1, 0)−p14(0, 1)p15(1, 0)p23(0, 1)p24(1, 0)p35(0, 1).

The first term represents a cycle (1, 4, 2, 3, 5), while the second term represents its
inverse, (1, 5, 3, 2, 4). In terms of the graph G5, each of the monomials represent
edges, in alternating order, of the cycle (α1,β4,α2,β3,α5,β1,α4,β2,α3,β5,α1).

Remark 3.2. In the proposition above, all binomials have square-free terms.
This means that the initial ideal of the toric ideal is square-free. Using a theorem of
Hochster [14], this implies that the coordinate rings of the corresponding varieties
are arithmetically Cohen-Macaulay. This is a powerful algebraic-geometric property
that is not encountered too often.

Remark 3.3. There is a special property of the design matrix, called uni-
modularity which, if satisfied, implies that all initial ideals or its toric ideal are
square-free, and also that circuits equal the Graver basis. In general, for the design
matrix of the p1 model it does not hold.

We are now ready to embark on a more detailed study of the simplified models.
3.4.1. Case I: no reciprocation. (ρij = 0, simplified model)
Let’s start with the simplest nontrivial example: n = 2. The rows of the design

matrix Z̃2 are [1, 0, 1], [0, 1, 1], [0, 1, 1], [1, 0, 1], [1, 1, 2], and are indexed by α1, α2,
β1, β2, and θ, while the columns are indexed by p12(1, 0), p12(0, 1), p12(1, 1). One
easily checks that the ideal IZ̃2

is the principal ideal IZ̃2
= (p12(1, 0)p12(0, 1) −

p12(1, 1)) and thus this single binomial is a Markov basis, and also a Gröbner basis
with respect to any term order.

Next, let n = 3. The toric ideal IZ̃3
is minimally generated by the fol-

lowing set of binomials: p23(0, 1)p23(1, 0) − p23(1, 1), p13(0, 1)p13(1, 0) − p13(1, 1),
p12(0, 1)p12(1, 0)−p12(1, 1), p12(0, 1)p13(1, 0)p23(0, 1)−p12(1, 0)p13(0, 1)p23(1, 0). It
is interesting to note that the first 3 generators are the “trivial” ones (as seen in
case n = 2).

For the network on n = 4 nodes, we get the first interesting Markov basis
elements. Namely, there are inhomogeneous binomials of degree 2 which represent
the “obvious” relations, which are of the form pij(0, 1)pij(1, 0)−pij(1, 1).Next, there
are square-free quadrics (homogeneous binomials of degree 2): pik(1, 0)pjl(1, 0) −
pil(1, 0)pjk(1, 0), and there are degree-three binomials that resemble the degree-
three generator of the ideal IZ̃3

: pij(0, 1)pik(1, 0)pjk(0, 1)−pij(1, 0)pik(0, 1)pjk(1, 0).
Note that if we write pjk(1, 0) and j > k, then we mean pkj(0, 1), since for all
pjk(a, b) we assume j < k.

In order to obtain a Gröbner basis for the ideal IZ̃n
, we can use what we know

about IAn . The advantage of studying IAn over IZ̃n
is that it is a homogeneous

ideal; that is, both monomials in each binomial appear with the same degree. One
can see that the ideal is homogeneous by inspecting the columns of the matrix:
each column has the same 1-norm. The ideal of the simplified model admits a nice
decomposition:

Theorem 3.2 (Decomposition of the ideal of the simplified model Z̃n). IZ̃n
=

IAn+T , where T is the ideal generated by the binomials of the form pij(0, 1)pij(1, 0)−
pij(1, 1) for all pairs of nodes i < j.
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Proof. One inclusion (⊃) is clear. To prove the other inclusion, consider
f ∈ IZ̃n

such that pij(1, 1) divides one of its terms for some i, j. Since the ideal is
toric, it suffices to consider the case when f is a binomial. Then it can be written
as f = pij(1, 1)m1 −m2 where m1 and m2 are monomials. But then we can write
f = (pij(1, 0)pij(0, 1)m1 − m2) − m1(pij(0, 1)pij(1, 0) − pij(1, 1)). Repeating this
procedure if necessary, we can write f as a combination of binomials whose terms
are not divisible by any of the variables pij(1, 1) and those binomials that generate
T . To conclude, note that those not divisible by any of the pij(1, 1) are in the ideal
IAn by definition. !

Combining the above results, we obtain a Markov (Gröbner) basis for the ideal
of the simplified model:

Theorem 3.3 (Gröbner basis for the simplified model Z̃n). Let GT be the
binomial generators of T , that is, GT := {pij(0, 1)pij(1, 0)− pij(1, 1)} for all pairs
of nodes i < j. Let Gn be the set of binomials arising from the cycles of Gn, as in
Theorem 3.1. Then the ideal of the simplified model IZ̃n

has a Gröbner basis, and
thus a Markov basis, consisting of the union of the binomials in Gn and GT .

Proof. First we will show that the set GT actually forms a Gröbner basis for
T . Namely, pick an elimination order where the variables pij(1, 1) are greater then
the remaining variables. Then, the degree-one terms of the binomials in GT are
the initial terms. Since they are all relatively prime, the given generators form a
Gröbner basis as all S-pairs reduce to zero (for details about Gröbner basis com-
putations, the reader should refer to Buchberger’s criterion [3] as well as standard
references [6, 18]).

Next, take any Gröbner basis Gn for the ideal IAn with respect to some order ≺.
According to Lemma 3.2, Gn∪GT generates the ideal IZ̃n

. Let ≺′ be the refinement
of the term order ≺ by the elimination order used for GT . The we get that Gn ∪GT

is in fact a Gröbner basis for IZ̃n
with respect to ≺′, since no initial term in GT

appears as a term in Gn and thus all the S-pairs will again reduce to zero. The
Gröbner basis Gn for the ideal IAn follows from Theorem 3.1. !

To derive minimal Markov bases for the simplified model, it remains to find a
minimal generating set for the ideal of the edge subring of an incomplete bipartite
graph. To the best of our knowledge, there isn’t a result that states these are
generated in degrees two and three. In particular, we claim:

Conjecture 3.1. A minimal Markov basis for the ideal IZ̃n
consists of the

elements of degrees 2 and 3. All inhomogeneous elements are of the form

pij(0, 1)pij(1, 0)− pij(1, 1).

All quadrics are of the form pik(1, 0)pjl(1, 0)−pil(1, 0)pjk(1, 0), where i, j, k, l vary
over all possible four-node subnetworks. All cubics are of the form

pij(0, 1)pik(1, 0)pjk(0, 1)− pij(1, 0)pik(0, 1)pjk(1, 0),

where i, j, and k vary over all possible triangles (3-cycles) in the network.

3.4.2. Case II: constant reciprocation. (ρij = ρ, simplified model)
There is a small but crucial difference between Z̃n and C̃n: one more row,

representing the constant ρ added to those columns indexed pij(1, 1) for all i, j ∈ [n].
This row is filled with the pattern 0, 0, 1 repeated as many times as necessary. Note
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that adding the extra row makes this ideal homogeneous, that is, the two terms of
each binomial have the same degree. Note that homogeneity is easy to verify: the
dot product of each column of C̃n with the vector w = [1, . . . , 1,−n− 1] results in
the vector [1, . . . , 1], as required, for example, by Lemma 4.14. in [18].

For two nodes, the ideal is trivial. For n = 3 nodes, the Markov basis con-
sists of 4 binomials of degree 3 of the following forms: pik(1, 0)pik(0, 1)pjk(1, 1) −
pik(1, 1)pjk(1, 0)pjk(0, 1), pij(1, 0)pik(0, 1)pjk(1, 0) − pij(0, 1)pik(1, 0)pjk(0, 1), and
6 of degree 4 of the form: pij(0, 1)2pik(1, 1)pjk(0, 1) − pij(1, 1)pik(0, 1)2pjk(1, 0).
For n ≥ 4, the Markov bases consist of elements of the above type, but also in-
clude quadrics of the form: pik(1, 0)pjl(1, 0) − pil(1, 0)pjk(1, 0), pij(1, 1)pkl(1, 1) −
pik(1, 1)pjl(1, 1).

Conjecture 3.2 (Minimal Markov basis of the simplified model C̃n). The ideal
IC̃n

is generated in degrees 2, 3, and 4, and the binomials are of the form described
above.

Note: due to the existence of ρij , we do not get the relations GT from the case
ρij = 0. Recall they were of the form pij(1, 0)pij(0, 1) − pij(1, 1). They cannot
be in the ideal in this case, since the bi-directed edge between i and j is valued
differently then the two single edges (i, j) and (j, i). Gröbner bases or even Markov
bases in this case remain an open problem that we will continue to study.

3.4.3. Case III: edge-dependent reciprocation. (ρij = ρ + ρi + ρj, simplified
model)

To construct the design matrices Z̃n for this case, we start with the matrix C̃n
from the case ρij = ρ, and introduce n more rows indexed by ρ1, . . . , ρn. Every
third column of the new matrix, indexed by pij(1, 1), has two nonzero entries: a 1
in the rows corresponding to ρi and ρj . For example, when n = 3, the matrix is:

Ẽ3 =





1 0 1 1 0 1 0 0 0
0 1 1 0 0 0 1 0 1
0 0 0 0 1 1 0 1 1
0 1 1 0 1 1 0 0 0
1 0 1 0 0 0 0 1 1
0 0 0 1 0 1 1 0 1
1 1 2 1 1 2 1 1 2
0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1





.

The kernel of this matrix is generated by one vector, and in fact the ideal IẼ3
is the

principal ideal IẼ3
= (p12(1, 0)p23(1, 0)p13(0, 1)− p12(0, 1)p23(0, 1)p13(1, 0)). When

we calculate the ideals for larger networks, some more familiar binomials appear.

Theorem 3.4 (Decomposition of the simplified model Ẽn). Let IAn be the ideal
as in Section 3.4. Let Q be the ideal generated by the quadrics pij(1, 1)pkl(1, 1) −
pik(1, 1)pjl(1, 1) for each set of indices 1 ≤ i, j, k, l ≤ n. Then IẼn

= IAn + Q for
every n ≥ 4.

Proof. Consider the submatrix of Ẽn consisting of those columns that have
only zeros in the last n rows. Erasing those zeros, we get precisely the columns of
An. Thus IẼn

⊃ IAn .
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Similarly, the ideal of relations among those columns that have nonzero en-
tries in the last n rows is also contained in IẼn

. We will now show that this ideal
equals Q. To simplify notation, let M be the matrix consisting of the columns in
question, that is, those that are indexed by pij(1, 1) for all pairs i < j. Recall-
ing the definition of the action of the simplified parametrization map on pij(1, 1):
pij(1, 1) $→ αiβjαjβiθρρjρj , and the fact that the last n rows of M are indexed by
ρ1, . . . , ρn, we see that to study the toric ideal IM it suffices to study the ideal IM ′

where M ′ is the submatrix consisting of the last n rows of M . But IM ′ is a well-
studied toric ideal! Namely, M ′ agrees with the incidence matrix of the complete
graph Kn on n vertices: for each pair {i, j} there exists an edge (i, j).

Therefore the toric ideal IM ′ agrees with the toric ideal of the edge ring k[Kn],
where the vertices of Kn are labeled by the nodes 1, . . . , n, and an edge between
i and j represents the variable pij(1, 1). It is well-known (see, for example, [5])
that IM ′ is generated by quadrics. Moreover, from [4] and references given therein
(see also Corollary 9.2.3. in [19]) it follows that these quadrics be interpreted as
2×2-minors of a certain tableaux. But our definition of the ideal Q is precisely the
set of those 2× 2-minors, thus IM ′ = Q and we obtain IẼn

⊃ Q.
To complete the proof, we need to show the reverse inclusion. To that end,

let f = f+ − f− ∈ IẼn
. If no pij(1, 1) divides either term of f , then f ∈ IAn and

we are done. On the other hand, suppose pij(1, 1)|f+ for some pair i, j. Then the
definition of IẼn

implies that one of the following conditions are satisfied:

(1) pij(1, 1)|f−. But then the binomial f is not primitive, and thus it cannot
be required in any minimal generating set, or a Gröbner basis, of IẼn

.
(2) pkl(1, 1)|f+ for some other pair of indices k, l. But this in turn implies

that
(a) pij(1, 1)pkl(1, 1)|f− and f fails to be primitive trivially; or
(b) without loss of generality, pik(1, 1)pjl(1, 1)|f− and f fails to be prim-

itive by the quadric in Q; or
(c) f+ is divisible by another variable pst(1, 1), and the pattern contin-

ues.

In general, it is clear that any f whose terms are divisible by the variables repre-
senting columns of M will fail to be primitive by one of the binomials in the ideal Q.
Therefore, the ideal IẼn

is generated by the binomials of IAn and Q, as desired. !
Next we obtain a Gröbner basis for our toric ideal. Recall from Section 3.4 that

Gn = Kn,n\{(i, i)}ni=1. We have seen that the graph Gn played an essential role
in the case when ρij = 0, and it will play an essential role here as well, since it is
essential in describing the Gröbner bases of the common submatrix An. However,
in order to study the Gröbner basis of the ideal Q, we need to use graphs with more
edges. It comes as no surprise, then, that these ideals will have a more complicated
Gröbner basis then those from Section 3.4. Thus we need to generalize Definition
3.2 for the complete graph Kn on n vertices:

Definition 3.3. As before, following [5] and [19], we say that a binomial fw
arises from an even closed walk w of Kn if:

(1) w is an even closed walk w of Kn; namely, w is a closed walk on a subset
of the vertices of Kn such that it is of even length (even number of edges)
w = ({v1, v2}, . . . {v2k−1, v2k}), with 1 ≤ v1, . . . , v2k ≤ n. The closed
condition requires that v2k = v1.
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(2) fw is the binomial obtained by placing the variables corresponding to the
edges of the walk w alternately in one and then the other monomial of
fw. In other words, fw = f+

w − f−
w with

f+
w = pv1,v2(1, 1)pv3,v4(1, 1) . . . pv2k−1,v1(1, 1),

and

f−
w = pv2,v3(1, 1)pv4,v5(1, 1) . . . pv2k−2,v2k−1(1, 1),

where for compactness of notation we have let pij(1, 1) = pji(1, 1) if i > j.

We say that the even closed walk w is primitive if the corresponding binomial is
primitive.

Let us state the characterization of such walks from [5]:

Lemma 3.2 ([5], Lemma 3.2.). A primitive even closed walk on a graph G is one
of the following: an even cycle of G; or two odd cycles having exactly one common
vertex; or two odd cycles having no common vertex together with two more walks,
both of which connect a vertex of the first cycle with a vertex of the second cycle.

In Section 3.4, we have seen only even cycles. This is because the graph in
question, namely Gn, was bipartite, and therefore had no odd cycles. We are now
ready to state the main result of this section.

Theorem 3.5 (Gröbner basis of the simplified model Ẽn). The ideal IẼn
admits

a Gröbner basis consisting of the binomials arising from the cycles of the bipartite
graph Gn together with the binomials arising from the primitive closed even walks
of Kn, the complete graph on n vertices.

Proof. Recall that Gn are precisely the binomials arising from the cycles of
Gn. We have seen in Theorem 3.3 that Gn form a Gröbner basis for IAn (in fact,
they are a Graver basis). Since the ideals IAn and Q are in disjoint sets of variables,
it remains to find a Gröbner basis for Q. We do this by generalizing the argument
in the proof of Theorem 3.3. Namely, from the proof of Theorem 3.4 we know that
Q is the toric ideal of the edge ring k[Kn]. This allows us to use [5] and [19] again,
and we obtain (e.g. Lemmas 3.1. and 3.2. in [5]) that the Graver basis of Q consists
of the binomials arising from the primitive even closed walks on Kn. In addition,
note that Theorem 9.2.1 of [19] provides a quadratic Gröbner basis as well. !

A proof of Conjecture 3.1 would imply the following:

Conjecture 3.3 (Minimal Markov basis of the simplified model Ẽn). For n ≥
4, the ideal IẼn

is minimally generated by homogeneous binomials of degrees 2 and
3. More precisely, the degree 2 and 3 binomials in Gn, together with the quadratic
generators of Q, form a Markov basis for the model.

3.5. From the edge subring of a graph back to the p1 model. We are
now ready to introduce the λij back into the parametrization and consider the
original design matrices Zn, Cn and En. Recall that they can be obtained from Z̃n,
C̃n and Ẽn, respectively, by adding

(n
2

)
columns representing the variables pij(0, 0)

for all i < j and
(n
2

)
rows indexed by λij .

Example 3.3. Let n = 4. Then, for the case in which ρij = 0, the 15 × 24
design matrix Z4 is shown in Appendix A.
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The following analysis applies to both the case of constant ρij and the case of
edge-dependent ρij , thus we will treat them simultaneously.

There is a very concise way to describe the new toric ideal in terms of the cases
when λij were ignored. For a binomial f , we will say that f is multi-homogeneous
with respect to each pair {i, j} if the degrees in the variables indexed by the pair
{i, j} agree for the two monomials of f . More precisely, if f = f+ − f−, then we
require that degpij(0,0)(f

+) + degpij(1,0)(f
+) + degpij(0,1)(f

+) + degpij(1,1)(f
+) =

degpij(0,0)(f
−)+degpij(1,0)(f

−)+degpij(0,1)(f
−)+degpij(1,1)(f

−) for each pair {i, j}.
This allows us to make a simple observation.

Proposition 3.2 (Geometry of the p1 model). The toric ideals IZn , ICn and
IEn of the p1 model on an n-node network are precisely those parts of the ideals
IZ̃n

, IC̃n
and IẼn

, respectively, which are multi-homogeneous with respect to each
pair {i, j}. Therefore, the toric variety for the p1 models is obtained by slicing the
corresponding varieties of the simplified model by

(n
2

)
hyperplanes.

Proof. The rows indexed by λij that are added to the matrices IZ̃n
, IC̃n

and IẼn
require precisely that the binomials in the ideal are multi-homogeneous

according to the criterion given above. For example, consider the first row indexed
by λ1,2. For any binomial f = pu

+ − pu
−
in the ideal, the exponent vector u+−u−

being in the kernel of the matrix means that the number of variables p1,2(•, •) which
appear in pu

+
equals the number of variables p1,2(•, •) that appear in pu

−
.

For the hyperplane section statement, note that the varieties defined by IZ̃n
, IC̃n

and IẼn
live in a smaller-dimensional space than those defined by IZn , ICn , and IEn ,

respectively; but we may embed them in the natural way into a higher-dimensional
space. The hyperplanes are defined by the rows indexed by the λij ’s. !

In general, multi-homogeneous part of any given ideal is not generated by the
multi-homogeneous generators of the original ideal. But for the ideal of the p1 model
we are able to use homogeneity to decompose the Markov moves into “essential”
parts. The upshot of this result is that analysis and computations become easier.
In addition, all moves obtained this way are applicable and not redundant.

Theorem 3.6 (Essential Markov moves for the p1 model). The Markov moves
for the p1 model in the case of zero and edge-dependent reciprocation can be obtained
from the Graver basis of the common submatrix An, together with the Markov basis
for the ideal Q as defined in Theorem 3.4.

Remark 3.4. The case of constant reciprocation is more challenging as we
do not yet have a simple decomposition as in the other two cases. However, a
similar argument can be used to claim that the Markov moves in case of constant
reciprocation can be obtained by repeating the moves for the simplified model,
while respecting the multi-homogeneity requirement.

Before embarking on a proof of 3.6, let us make the claim more precise. Take
q = q+ − q− ∈ IZ̃n

or IẼn
in the ideal of the simplified model. The monomials

q+ and q− are represented by directed edges in our n-node network. If q+ and q−

represent the same cycle with different orientation, then q is multi-homogeneous
already. On the other hand, suppose

q =
d∏

k=1

pikjk(ak, bk)−
d∏

k=1

psktk(ck, dk)

279



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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where pikjk(ak, bk), psktk(ck, dk) ∈ {pij(1, 0), pij(0, 1), pij(1, 1)}, i < j, for 1 ≤ k ≤
d. Then we may define

q̃ :=
d∏

k=1

pikjk(ak, bk)
d∏

k=1

psktk(0, 0)−
d∏

k=1

psktk(ck, dk)
d∏

k=1

pikjk(0, 0).

Also, one can modify q̃ by taking k in a subset of {1, . . . , d}, as we may not need
every k from 1 to d to make q multi-homogeneous. We call each such q̃ a lifting of q,
including the case when q is lifted using less then d variables in each term. (Note:
in addition, if not all of (ak, bk) and (ck, dk) are (1, 1), we may lift q by pij(1, 1)
instead of pij(0, 0).)

It is clear that all of these lifts are in the toric ideal of the model. It is not clear
that these are sufficient to generate it (or give its Gröbner basis). In particular,
it seems that there is another kind of lifting that needs to be included to generate
the ideal of the model. Essentially, it involves overlapping two (or more!) minimal
generators of the ideal IAn in a special way.

For example, consider the binomial

p12(1, 0)p13(0, 1)p14(0, 1)p23(1, 1)− p12(0, 1)p13(1, 1)p23(0, 1)p24(0, 1),

which is in the ideal for the model on n ≥ 4 nodes. It is not of the form q̃, that is,
it is not lifted in the nice way described above. However, it can still be obtained
from binomials on the graph on 3 nodes. Let f+ = p12(1, 0)p13(0, 1)p23(1, 0),
f− = p12(0, 1)p13(1, 0)p23(0, 1) and g+ = p14(0, 1)p23(0, 1), g− = p13(0, 1)p24(0, 1).
Note that f = f+− f− and g = g+− g− are in the simplified model ideal for n ≥ 3
nodes. If we use the fact that in the graph the edges from node 1 to node 3 and from
node 3 to node 1 combine to a double-ended edge between 1 and 3, and if we define
f"g = f+g+−f−g−, then we obtain precisely p1,2(1, 0)p1,3(0, 1)p1,4(0, 1)p2,3(1, 1)−
p1,2(0, 1)p1,3(1, 1)p2,3(0, 1)p2,4(0, 1).

We will call such an operation (f " g) an “overlap” of two binomials, since it
corresponds to overlapping the edges of the graphical representations of f+ − f−

and g+−g−. Take a binomial f "g in the ideal of the model IEn . Note that it may
happen that neither f nor g are in IEn . But in terms of moves, f " g is equivalent
to performing two successive moves: the one defined by f , and the one defined by
g. In particular, binomial overlaps give rise to consecutive Markov moves which
respect multi-homogeneity.

Remark 3.5. Note that Q appears only in the decomposition for the ideal IẼn
,

and not IZ̃n
. But for example the binomial p12(1, 1)p34(1, 1)p23(0, 0)p14(0, 0) −

p12(0, 0)p34(0, 0)p23(1, 1)p14(1, 1) is a homogenization of a generator of Q, and it
lives in the ideal IZ̃4

. Homogenization by pij(0, 0) does not affect the move itself.

Proof of Theorem 3.6. Clearly, all moves from IAn and Q can be homog-
enized by lifting: that is, if q ∈ IAn , then q̃ ∈ IEn . The proof relies on a simple, yet
crucial, observation that by definition, the ideal of the model is contained in the
ideal of the simplified model; e.g. IEn ⊂ IẼn

.
Let f ∈ IEn . Then f ∈ IẼn

. If f is in the Graver basis of IẼn
, then we are

conclude by Theorem 3.5. Alternately, assume f is not in the Graver basis of IẼn
.

Then there exists a binomial p ∈ IẼn
such that p+ divides f+ and p− divides

f−. Equivalently, we can write f as f = p " f̃ for f̃ defined appropriately (e.g.
f̃+ := f+/p+). Since we may assume that p is primitive, we can keep decomposing f̃
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until we obtain an overlap of k primitive binomials from the ideal of the simplified
model. Note also that we may assume that in the end we are not in the case
where f̃+ = f̃−. Indeed, if f is a multiple of another binomial in the ideal, say,
f = f̃+g+ − f̃+g−, then g+ − g− is also in the ideal. In terms of moves, multiples
do not contribute anything: they instruct us to remove and add the same edge.

Replacing En by Zn does not change the above argument. !

Using these two constructions of lifting and overlapping, we make the following
conjecture:

Conjecture 3.4. Minimal Markov (Gröbner) bases for the p1 models can be
obtained from Markov (Gröbner) bases of IAn by repeated lifting and overlapping
of the binomials in the minimal Markov bases of various (n− 1)-node subnetworks.

We close this section by remarking that these various liftings imply a (possibly
non-sharp) degree bound on the Markov and Gröbner bases for the model. For
example, each lifting of the first type will add at most

(n
2

)
edges to each monomial

of q thus increasing the degree by at most
(n
2

)
from the degree needed for the

simplified model, while overlapping k binomials will allow the degrees of generators
to increase k times. Note that we have already seen lifts and overlaps in Examples
3.1 and 3.2.

4. Discussion

We close with a discussion about the relationship between our parametrization
and the log-linear parametrization suggested by [9, 10]. Fienberg and Wasserman’s
parametrization of the p1 model encodes it as a n2×2×2 contingency table, where
the first variable corresponds to a dyad and the second and third represent the four
dyadic configurations. Thus, a network is represented as a point x in R4n2

with 0/1
entries. This log-linear parametrization is clearly highly redundant, as, besides the
multinomial constraints on each of the n2 dyads, there are additional symmetric
constraints of the form xi,j,k,l = xj,i,k,l, for all i, j ∈ {1, . . . , n} and k, l ∈ {0, 1}.
Although, as shown in [11], these redundancies can be convenient when computing
the MLE, they are highly undesirable for finding Markov bases. Indeed, the toric
ideal corresponding to the this parametrization has 4n2 indeterminates while our
parametrization only contains 2n(n− 1).

For example, when n = 5, this means the toric ideal lives in the polynomial ring
with 100 indeterminates, instead of 40 that we have. In addition, the number of
generators explodes combinatorially: for the case of constant reciprocation, ρij = ρ,
the ideal of the network on n = 3 nodes has 107 minimal generators, and the one of
the 4-node network has 80, 610. The case when n = 5 is hopeless: even 4ti2, the
fastest software available to compute generating sets of toric ideals, cannot handle
it.

One wonders what all of these extra generators are! First of all, note that
this contingency-table representation is highly redundant. Most of the Markov
basis elements are inapplicable because of the product multinomial constraints and
the symmetry constraints. Finally, the many symmetries in the table imply many
highly non-trivial constraints that have to be accounted for when eliminating non-
applicable moves. We were able to analyze the n = 4 case and reduce all of the
80610 moves to the ones we get using the design matrices Cn, but the effort was
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nontrivial. Therefore, at least from the point of view of studying Markov bases, the
parametrization we are using in the present paper is preferable.

Our hope is that this article motivates a deeper study of the algebraic statistical
challenges for p1 models and their extensions.

Appendix A. Matrix of Example 3.3





1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2
0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1
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