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Abstract

The graphon model for random graphs is a general class of node-exchangable
random graph models, which includes Stochastic Block Models and Latent Space
Models as special cases. Various estimation procedures for graphons exist in the
literature. However, accurate estimation requires either an unbiased sample or
some way to account for potential bias in the sampling scheme. This presents a
challenge for estimating modern social networks, where the edge sparsity can lead
to unreliable estimates of the graphon based on the subgraph induced by a uniform
sample of nodes. To alleviate this issue, we consider edge-induced subgraphs. To
account for the sampling bias, we establish theory that describes the sampling
distribution of these edge-induced subgraphs of graphons.

1 Introduction

Graphons were originally introduced as limiting objects for sequences of dense graphs by [18].
Graphons can be considered to be a vast generalization of the SBM, and in fact, any exchangeable
random graph model is a graphon. In this section, we establish some basic theory for what graphons
look like locally. More precisely, consider the graph model induced by taking only the nodes which
are connected to a particular node in the network. In some sense, we are discussing a vertical
(equivalently horizontal) slice of the whole-network graphon. The act of looking only at nodes which
satisfy the additional constraint of being connected to some ego node should induce a local graphon,
which is in general different from the original ambient graphon.

There is a rich literature for estimating the parameters of SBMs [12, 19] and graphons [1, 8, 22, 3].
These methods assume that the observed network was essentially obtained by observing the nodes
uniformly at random. Comparatively little work has been done on estimating model parameters from
an edge-wise sampling scheme compared to the node-wise case. A Bayesian procedure for estimating
the whole-network parameters for an SBM from a snowball sample is outlined in [20]. Work by
[11, 15, 16, 21] establishes further results, with several simulated results, towards understanding the
effect that snowball/respondent-driven sampling has on network models. To our knowledge, there are
no such results in the literature for graphon estimation from edge-wise samples.

Section 2 establishes a theoretical framework for understanding the local structure of graphon models
(of which the SBM is a special case). Section 3 introduces properties of snowball samples, and
Section 4 discusses the estimation problem for snowball sampling.

2 Local Graphons

The graphon model defines the probability of an edge between nodes i and j as

P (Aij = 1 | Ui, Uj) = w(ui, uj),



where Ui and Uj are independent draws from Unif(0, 1). These edge probabilities are then condi-
tionally independent over the pairs of nodes given knowledge of the U ’s. This implies that

P (Aij = 1 | Ui) =

∫ 1

0

w(ui, y) dy.

This conditional tie probability is also known as the degree function [17], which is denoted by

dw(x) ≡
∫ 1

0

w(x, y) dy.

Remark 1. In the case of an SBM, this evaluates to

P (Aij = 1 | Ui) =

∫ α1

0

πzi,1 dy +

∫ α2+α1

α1

πzi,2 dy + · · ·+
∫ 1

1−αQ

πzi,Q dy

=

Q∑
q=1

πzi,qαq

= π̄zi ,

where π̄zi is equivalent to the symbol defined in Remark 1 of [13].
Corollary 1. An implication of the degree function is that, since the edge probabilities are iid given
Ui, ∑

j 6=i

Aij | Ui ∼ Bin

(
n− 1,

∫ 1

0

w(ui, y) dy

)
.

Hence, in a sample of n nodes from w, the expected degree of the node i with associated parameter x
is (n− 1)

∫ 1

0
w(x, y) dy. In other words, nodes are entering the local (ego) network around the node

i at the rate
∫ 1

0
w(x, y) dy.

2.1 Filtering a Graphon through the Slice w(Ui,−)

There is a geometric intuition that the local graphon is induced by filtering the whole-network graphon
through the slice w(Ui,−). Looking at such a slice, one will notice regions of high values, which
signify higher probabilities of sampling into the local network. The values of the graphon along
the slice can be thought of as corresponding to holes of different sizes in a sieve, where nodes from
high-density regions will easily sieve through to the local network. Therefore, regions of relatively
high values in w(Ui,−), say, over S ⊂ [0, 1], should induce a “stretching” of the interval around S,
and likewise, a “compression” of the interval outside of S.
Lemma 1. As we know from the definition of a graphon, fUi

(x) = 1 over [0, 1]. However,

Uxj ∼ fUj
(y | Aij = 1, Ui = x) =

w(x, y)∫ 1

0
w(x, y) dy

.

In the case of an SBM, we see that the multinomial class probabilities (α1, . . . , αQ) are weighted
by the action of filtering through node i, resulting in a new set of multinomial class probabilities
(πZi,1α1, . . . , πZi,QαQ)/π̄Zi

.

In fact, we may reformulate all of our results from the previous section in terms of this localized
SBM with parameters π′ = π and α′ = (πZi,1α1, . . . , πZe,QαQ)/π̄Ze

. Indeed, π̌Zes can be related
to π̄′Zes

in the following way:
Remark 2. An expression for π̌Zes is

π̌Zes =
∑
t∈[Q]

π′stα
′
t = π̄′Zes.

The analysis in [5] can then be repeated with these values of π′ and α′. This will yield results that
are comparable to, but not exactly the same as what was derived in an analysis of the mutual friend
counts [13]. The difference is that n′ 6= n; that is, the size of the graph is now the size of the ego
network, and not the size of the whole network. Since the size of the ego network is stochastic (as it
equals the degree of the ego node), an analysis using π′ and α′ as the parameters of an SBM would
essentially be conditioning on the size of the ego network being fixed at n′.
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2.2 Representations of Local Graphons

In order to specify the node parametrization of the local graphon the canonical way, we need
Uxj ∼ Unif(0, 1). As we know from basic probability theory, if given a random variable X ∼ F ,

then a uniform random variable U can be transformed via Q(U)
d
= X , where Q is called the quantile

function. If the CDF is strictly monotone, we can invert it to get its quantile function, but if it
has regions of zero derivative or jumps, we may use the generalized inverse [7] to get the quantile
function, instead. The generalized inverse of the CDF F is defined as

Q(p) ≡ inf{t : p ≤ F (t)}.

To summarize, we consider the local graphon at x, denoted by wx, to mean the graphon obtained by
filtering w through the slice w(Ui = x,−).
Theorem 1. The local graphon function can be represented as

wx(u, v) = w(Qx(u), Qx(v)).

We write the quantile function Q as Qx with the subscript x since it will be useful to track the slice
location Ui = x. And so, the probability of two nodes i and j connecting in a graph on n nodes
drawn from the local graphon wx, which we will denote by Gxn with adjacency Axij , is

Axij |Uxi = u, Uxj = v ∼ Bern(wx(u, v) = w(Qx(u), Qx(v))).

A technical consideration when dealing with graphons is that any given graphon function w is merely
a representation of an equivalence class of graphons, denoted [w]. For any two graphon functions
w1 and w2 from [w], there exist two measure-preserving transformations1 φ1 and φ2, so that for all
u, v ∈ [0, 1],

w1(φ1(u), φ1(v)) = w2(u, v) w1(u, v) = w2(φ2(u), φ2(v)).

In other words, any two representations of the same graphon will be the same up to a kind of
permutation of the domains.

A natural question to ask is whether two representations w1, w2 ∈ [w] (related via a measure-
preserving transformation φ : w1(u, v) = w2(φ(u), φ(v))) with corresponding ego parameters x and
φ(x) localize to two representations of a single local graphon. That is, are the localized versions of
w1 and w2 still related via a measure-preserving transformation (possibly distinct from φ)?

Let Qx be the quantile function of the distribution of Uxj on the graphon function w1, as defined
above. Then,

(w1)x(u, v) = w1(Qx(u), Qx(v)) (1)
= w2(φ(Qx(u)), φ(Qx(v))) (2)
?∃ψ
= (w2)φ(x)(ψ(u), ψ(v)), (3)

where

φ(Qx(u)) = φ

(
inf

{
b : u ≤

∫ b
0
w1(x, t) dt∫ 1

0
w1(x, t) dt

})
= φ

(
inf

{
b : u ≤

∫ b
0
w2(φ(x), φ(t)) dt∫ 1

0
w2(φ(x), φ(t)) dt

})
.

If such a measure-preserving ψ exists, then w2 localized to φ(x) belongs to the same graphon class
induced by the tuple (w1, x), which we will denote [w1, x]. Ideally, it shall always be the case that
such a ψ will exist for any other localized representation of [w]. Indeed, we can write

(w2)φ(x)(ψ(u), ψ(v)) = w2(Q′φ(x)(ψ(u)), Q′φ(x)(ψ(v))),

where

Q′φ(x)(ψ(u)) ≡ inf

{
b : ψ(u) ≤

∫ b
0
w2(φ(x), t) dt∫ 1

0
w2(φ(x), t) dt

}
.

1A measure-preserving transformation on a measure space (X,Σ, µ) is a map f : X → X satisfying
µ(f−1(A)) = µ(A) for all A ∈ Σ.

3



This yields a relation which defines ψ: for all u, v ∈ [0, 1],

w2(φ(Qx(u)), φ(Qx(v))) = w2(Q′φ(x)(ψ(u)), Q′φ(x)(ψ(v))).

That this relation defines a valid measure-preserving map between these two graphon functions is
established by the following theorem.

Theorem 2. If φ is invertible and w1, w2 > 0 (so that Qφ(x) ≡ F−1
x and Q′x ≡ F ′−1

φ(x)), then
ψ ≡ F ′φ(x) ◦ φ ◦ F

−1
x is a measure-preserving map between (w1)x and (w2)φ(x). Any two such local

graphon functions are therefore representations of the same local graphon.

To prove this, we will require the following lemma.

Lemma 2. Let (X,Σ, µ) be a measure space with f integrable and φ : X → X measure-preserving,
i.e. µ(φ−1(S)) = µ(S) ∀S ∈ Σ. Then,∫

φ(S)

f dµ =

∫
S

f ◦ φdµ.

Proof. Clearly ∀f ′ integrable, ∫
X

f ′ dµ =

∫
X

f ′ ◦ φdµ.

Take f ′(x) ≡ f(x)1φ(S)(x). Then,∫
φ(S)

f dµ =

∫
X

f1φ(S) dµ

=

∫
X

(f ◦ φ)(1φ(S) ◦ φ) dµ.

as φ is assumed to be injective, φ(x) ∈ φ(S) implies that x ∈ S. So, 1φ(S) ◦ φ ≡ 1S . Hence,∫
X

(f ◦ φ)(1φ(S) ◦ φ) dµ =

∫
X

(f ◦ φ)1S dµ

=

∫
S

f ◦ φdµ.

Additional properties of measure-preserving maps on the unit inverval [0, 1] can be found in [6].
However, Lemma 2 is all we will need for the proof of Theorem 2.

Proof of Theorem 2. Note that we will use w1(x,−) and w2(φ(x),−) to mean the cross-sections of
the graphon, i.e. w1(x,−)(y) = w1(x, y). Then, we know that

w1(x,−) ≡ w2(φ(x),−) ◦ φ, (4)

by the definition of φ. Define ∀S ∈ B[0, 1]

Fx(S) =

∫
S
w1(x,−) dµ∫ 1

0
w1(x,−) dµ

F ′φ(x)(S) =

∫
S
w2(φ(x),−) dµ∫ 1

0
w2(φ(x),−) dµ

.

Since φ is measure-preserving, we know (by integrating both sides of (4))∫ 1

0

w1(x,−) dµ =

∫ 1

0

w2(φ(x),−) ◦ φdµ =

∫ 1

0

w2(φ(x),−) dµ,

so the normalization factors cancel in F ′φ(x) ◦ φ ◦ F
−1
x .
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Next, we will show that sampling a graphon from (w1)x is equivalent to sampling a graphon from
(w2)φ(x). Notice that if

F ′φ(x) ◦ φ ◦ F
−1
x (U)

d
= U ′,

where U,U ′ ∼ Unif(0, 1), then we are done, as this establishes that F ′φ(x) ◦ φ ◦ F
−1
x is a measure-

preserving transformation. Rewriting,

(F ′φ(x) ◦ φ ◦ F
−1
x )(U)

d
= U ′

⇐⇒ F−1
x (U)

d
= (F ′φ(x) ◦ φ)−1(U ′),

but this follows from observing that the LHS is an application of the inverse CDF to a uniform random
variable. Ignoring the normalization factors, which we showed cancel, we see that ∀a ∈ [0, 1],

P
(
F−1
x (U) ∈ [0, a)

)
=

∫
[0,a)

w1(x,−) dµ

=

∫
[0,a)

w2(φ(x),−) ◦ φdµ.

By Lemma 2, ∫
[0,a)

w2(φ(x),−) ◦ φdµ =

∫
φ([0,a))

w2(φ(x),−) dµ

= P
(
F ′−1
φ(x)(U

′) ∈ φ([0, a))
)

= P
(

(F ′φ(x) ◦ φ)−1(U ′) ∈ [0, a)
)
.

So, F ′φ(x) ◦ φ is the same CDF as Fx.

2.3 Some Example Realizations of Localized Graphons

Using the same process as described above for generating a local network, we sample local networks
from some simple examples for the ambient graphon [w]. The results of these small experiments are
displayed in Figures 1 and 2 as empirical graphons. Figure 3 shows the KDE-smoothed versions of
these examples. These plots were generated as follows.

1. Fix an ambient graphon representation w.
2. Sample a graph from w with n nodes, with adjacency matrix A.
3. Plot A as an empirical graphon, with the nodes sorted by the true values of Ui.
4. Let Ax be the principal submatrix of A obtained by keeping only the rows/columns indexed

by j where A1j = 1.
5. Plot Ax as an empirical graphon, again with the nodes sorted by Ui.

3 Snowball Sampling

As a natural extension of the case of the graphon induced by the ego network, we can describe the
local graphon induced by more than one ego, or seed, node. Let W0 denote the set of seed nodes,
called the seed set, from which waves W1,W2, . . . of snowball samples will grow. We (recursively)
define a wave via

Wk ≡

i ∈ V (G) :
∑

j∈Wk−1

Aij > 0,
∑

j∈
⋃

`<k−1W`

Aij = 0

 .

In other words, any node in the kth wave must be linked to at least one node in the (k − 1)th wave,
and it must not be linked to any node in a previous wave.
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Figure 1: Realization of the ambient graphon (left), actually an SBM with parameters π11 = 0.8,
π22 = 0.4, π12 = 0.1, and α1 = α2 = 0.5. The black lines correspond to the slice w(U1 ≈ 0.3,−)
at the parameter of the first-index node in the sampled graph. Visually, the membership probabilities
for the localized SBM (right) are approximately α′1 = 0.87 and α′2 = 0.13, whereas theoretically we
expect α′1 = π11α1/(π11α1 + π12α2) = 0.8 and α′1 = 0.1.

Figure 2: Realization of the ambient graphon (left), given by w(u, v) = uv. The black lines
correspond to the slice w(U1 ≈ 0.5,−) at the parameter of the first-index node in the sampled
graph. The local graphon (right) induced by this slice has a greater density of points in the lower and
left-hand edges, since the sparse regions are under-represented in the local graphon.

Theorem 3. In general, if there is a set of nodes W− that node j should not connect to, and a set of
nodes W+ that node j should have at least one connection to, then:

P

Uj = y

∣∣∣∣∣∣
∑

i∈W−
Aij = 0,

∑
i∈W+

Aij > 0, {Ui}i∈W−∪W+

 =

(
1−

∏
i∈W+ (1− w(ui, y))

)∏
e∈W− (1− w(ue, y))∫ 1

0

(
1−

∏
i∈W+ (1− w(ui, y))

)∏
e∈W− (1− w(ue, y)) dy

.

Corollary 2. The local graphon induced by multiple slices is described by

UW0
j ∼ fUj

(
y

∣∣∣∣∣ ∑
e∈W0

Aej > 0, {Ue}e∈W0

)
=

1−
∏
e∈W0

(1− w(ue, y))∫ 1

0
1−

∏
e∈W0

(1− w(ue, y)) dy
.

Clearly, when W0 = {i}, this reduces to Lemma 1.

Furthermore, the size of the first wave is:

|W1| |W0, {Ue}e∈W0 ∼ Bin

(
n− |w0|,

∫ 1

0

1−
∏
e∈w0

(1− w(ue, y)) dy

)
.
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If |W0| = 1, this is just the size of the ego network, as in Corollary 1. Similarly, the size of second
wave is described by:

|W2| | W0,W1, {Ue}e∈W0
, {Ui}i∈W1

∼ Bin

n− |w0| − |w1|,

∫
1

0

 ∏
e∈w0

(1− w(ue, y))

1−
∏

i∈w1

(1− w(ui, y))

 dy

 .

For each node not in the seed set or in the first wave, the probability of it entering the second wave is
equal to the probability of it not connecting to the seed set, and then connecting to at least one node
in the first wave. One can easily extend this to find the size distribution of the kth wave.
Lemma 3. In general, the size of the kth wave is distributed as

|Wk| | {W`}`<k, {Ui}i∈⋃`<k W`
∼ Bin

n−
k−1∑
i=0

|wi|,

∫
1

0

 ∏
i∈
⋃k−2
j=0

wj

(1− w(ui, y))


1−

∏
i∈wk−1

(1− w(ui, y))

 dy

 .

Note that the subgraph induced by
⋃
`≤kW` is not a graphon, since the existence of some edge to

Wk−1 for every node in Wk is guaranteed via this construction. However, the subgraph induced by
any given wave Wk is a graphon random graph.

4 Unbiased Graphon Estimation from Snowball Samples

Definitions for snowball sampling are provided by [9, 10, 14]. The particular design we consider for
now is a one-wave snowball sample starting from a single ego node. This is just a different way of
stating the scenario posed in the previous sections. The sample will consist of all of the alters of the
one ego node; we do not include the ego node in this sample.

Some of the network parameters will be impossible to estimate from just one of these samples. Even
asymptotically (as the size of the whole network grows to infinity), any SBM parameters associated
to communities for which the ego’s community has zero probability of connecting to will be fully
unobserved, and therefore cannot be estimated. For graphons, any areas that coincide with regions
of zero density along the ego’s slice will be impossible to estimate. A relative understanding of
the model, one limited to those regions of positive density, is still possible. However, to make the
following analysis simpler, we assume that all entries of π are strictly positive; likewise, we assume
w(u, v) > 0 for all u, v ∈ [0, 1]. This has an additional implication for the graphon case: Fx(u) is
strictly increasing and therefore its associated quantile function is simply its inverse.

For the SBM, recall: 
α′1 =

α1πZe,1

π̄Ze

...
α′Q =

αQπZe,Q

π̄Ze

Invert
=⇒


α1 =

α′1π̄Ze

πZe,1

...

αQ =
α′Qπ̄Ze

πZe,Q
.

A standard SBM estimation algorithm will provide estimates of π and α′ given a sampled ego network.
However, Ze and π̄Ze are not known a priori. By estimating Ze, an estimate for π̄Ze can be obtained
via
∑
q αq = 1. In fact, using only the mutual friend counts, Ze is non-identifiable in some cases.

However, as long as π̌ZeZe > π̌Zes for all blocks s, Ze can be estimated. This holds under the
conditions discussed in Section 3.1 of [13].

This means we are only missing an estimate of π̄Ze
. Since it is only a normalization factor, we could

estimate it via
ˆ̄πZe =

∑
q∈[Q]

πẐeq
α̂q.

However, this assumes that nodes from every community q = 1, . . . , Q is observed in the ego network.
Instead, we can try to estimate the observed subset of the SBM.

The problem carries over naturally to the more general graphon case. For the graphon, one can just
reverse the defining equation for the local graphon,

wx(u, v) = w(Qx(u), Qx(v))
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to obtain
w(u′, v′) = wx(Fx(u′), Fx(v′)).

The unknown here is the parameter of the ego node, Ui = x. Therefore, one may first run a graphon
estimation algorithm (e.g. kernel-density smoothing of the empirical graphon) to obtain an estimate
for wx; all that remains is to estimate Ui. Ui cannot be identified from any one realization of the
graphon without making certain assumptions about w, such as the graphon being canonical, as in [4].
If one had knowledge of the true values of the node parameters for the seed nodes, the solution would
be immediate; so, another possibility is to design an algorithm that utilizes observations of multiple
(possibly disjoint) ego networks to estimate these parameters.

5 Conclusions

A better understanding of the sampling bias induced by sampling edges rather than nodes could
lead to more efficient estimation procedures for large social networks. In particular, computational
limitations involved with studying networks with billions of nodes may necessitate subsampling. This
work establishes some of the basic properties of “local” subsamples of large networks which may be
modeled as graphon random graphs.

Theorem 2 provides a partial answer to the question: “Are any two representations of the same
local graphon in the same equivalence class as graphons?” In the case where φ is invertible the
answer is yes, but in general two graphon functions w1 and w2 representing the same graphon will
be related via two measure-preserving maps φ1 and φ2 which are not necessarily inverses (nor even
invertible). In our proof, we leverage knowledge of the CDFs induced by the graphon slices to equate
two distributions; it is possible that slight modification of the same argument will establish the result
without needing to invert φ. In addition, we currently impose the restriction that w1, w2 > 0 so that
the CDFs induced by the graphon slices are strictly increasing (and therefore invertible). However, it
should be possible to remove this assumption; the regions where w1(x,−) = 0 should be the regions
where w2(φ(x),−) ◦ φ = 0, so one could invert on a restriction of the domain and make a separate
argument for the flat regions of the CDFs.
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A Appendix

A.1 Conditions on π and α

To make the problem simpler, we assume that the block matrix π is of the form

π =


w b . . . b
b w . . . b
...

...
. . .

...
b b . . . w


so that all of the within-block probabilities are w, and all of the between-block probabilities are b (similar results
can be found without this assumption, but to keep this document short we omit them). This means that

π̌Zes =
1

π̄Ze

 ∑
t∈[Q]\{Ze,s}

πZetπstαt

+ πZes(πZeZeαZe + πssαs)


=

1

π̄Ze

 ∑
t∈[Q]\{Ze,s}

b2αt

+ wb(αZe + αs)


and

π̌ZeZe =
1

π̄Ze

 ∑
t∈[Q]\{Ze}

π2
Zetαt

π2
ZeZe

αZe


=

1

π̄Ze

 ∑
t∈[Q]\{Ze}

b2αt

+ w2αZe

 .
Then, the necessary and sufficient conditions for the ego’s community to have the highest expected mutual friend
count are

π̌ZeZe − π̌Ze1 > 0

π̌ZeZe − π̌Ze2 > 0
...
π̌ZeZe − π̌Ze(Ze−1) > 0

π̌ZeZe − π̌Ze(Ze+1) > 0
...
π̌ZeZe − π̌ZeQ > 0

⇐⇒



(w − b)(wαZe − bα1) > 0

(w − b)(wαZe − bα2) > 0
...
(w − b)(wαZe − bαZe−1) > 0

(w − b)(wαZe − bαZe+1) > 0
...
(w − b)(wαZe − bαQ) > 0

⇐⇒



αZe >
b
w
α1

αZe >
b
w
α2

...
αZe >

b
w
αZe−1

αZe >
b
w
αZe+1

...
αZe >

b
w
αQ.

Assuming an assortative SBM, so that w > b, the ego community can be quite small in the overall network.
Generally, w is taken such that w � b, so that the ego community will generally be identifiable from the mutual
friend counts. Note that even if α′Ze

= α′s for some s 6= Ze, the mutual friend counts are still expected to be
higher for the ego’s community, since πZeZe > πZes. This property endows the Mutual-Friends algorithm
with a kind of robustness, as long as the whole network can be adequately modeled with an SBM.

A.2 Proof of Lemma 1

Proof. Intuitively,

fUj (y|Aij = 1, Ui = x) =
P (Aij = 1|Ui = x, Uj = y) fUj (y|Ui = x)

P (Aij = 1, Ui = x)

=
w(x, y)∫ 1

0
w(x, y) dy

.

Note the conditioning on a zero-measure set, namely that Ui takes on a particular fixed value. Since the unit
inverval is separable and complete under the usual topology and metric, it admits regular conditional probabilities
[2]. In particular, if

P (Aij = 1, Ui = x) =

∫ 1

0

w(x, y) dy > 0

for λ-almost every x ∈ [0, 1], then fUj (y|Aij = 1, Ui = x) is a valid probability density for almost every x.
This means we can take the probability measure we are integrating with respect to to be the appropriate regular
version.
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A.3 Defining the Local Network Generative Process

To make rigorous the notion of a local graphon, we define the process which generates this object.

1. Given a graphon function w representing the graphon [w], sample a sequence of graphs Gn ∼ w for
n ∈ [N ], where Gn = Gn−1 + gn, where gn is a one-node graph sampled from w. That is, we add
one node at each time step n to the existing graph, and the edges to gn are determined via the graphon
function. G0 is defined to be the empty graph, G0 = (V,E) = (∅, ∅).

2. WLOG (due to exchangeability), consider the first node, i.e. the only node in G1. Condition on its
parameter U1 = x, for some fixed x ∈ [0, 1].

3. The expected number of nodes in Gn connected to the first node (henceforth the ego node) is therefore

E

∑
j 6=1

A1j

∣∣∣∣∣∣U1 = x

 = (n− 1)

∫ 1

0

w(x, y) dy = (n− 1)dw(x)→∞,

if dw(x) > 0.

4. Hence, the graphs in the sequence of subgraphsGx
n induced by the vertex set {j ∈ V (Gn) : A1j = 1}

almost surely grow unboundedly in size, and the convergence of homomorphism densities of Gn

should induce convergence of Gx
n (although this remains to be rigorously established).

We can therefore associate to a given representation w of [w] a local graphon induced by nodes filtered through
correspondence with an ego node having parameter x, where x is relative to the particular representation.

A.4 Smoothed Local Graphon Estimates

Figures 1 and 2 displayed the empirical graphons as zero-one estimates. In Figure 3 we apply KDE smoothing
to obtain possibly clearer depictions of the true local graphon functions.
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Figure 3: These smoothed empirical graphons are more accurate depictions of the true graphons.
The slope graphon w(u, v) = uv is more clearly skewed by the localization procedure than in the
zero-one depiction from Figure 2.
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