
Community Detection on Ego Networks
via Mutual Friend Counts

Nicolas Kim
Department of Statistics

Carnegie Mellon University
Pittsburgh, PA 15213

nicolask@stat.cmu.edu

Alessandro Rinaldo
Department of Statistics

Carnegie Mellon University
Pittsburgh, PA 15213
arinaldo@cmu.edu

Abstract

Community detection is an important tool for understanding the structure of social
networks, and spectral clustering is the standard algorithm for performing com-
munity detection within the statistics literature. However, its polynomial-order
runtime means it cannot be applied to contemporary social networks with billions
of nodes. To address this computational challenge we provide a statistical analysis
of a simple algorithm that solves a more tractable problem: community detection
for the ego network. Under a broad class of parametrizations for the stochastic
block model on the data, this algorithm recovers the correct community labels for
the given ego network. Simulations show that this algorithm outperforms spectral
clustering when the number of communities is large.

1 Introduction

Today’s social networks are on track to encompass the world’s population. Facebook claims to have
1.79 billion active monthly active users, a larger figure than the combined population of China and
the United States of America. These massive networks present an opportunity to understand social
connectivity on an unprecedented scale. Of particular interest to social networking companies is
the potential to add compelling features for users and for advertisers. Clustering users is one way
of extracting relevant information from the network; however, these networks evolve rapidly, which
necessitates constant updating of these clusters in order to keep user and ad metrics as relevant as
possible.

The computational challenge of clustering networks with several billions of nodes has been unmet
among algorithms with statistical performance guarantees. Clustering for the stochastic block model
(SBM) has been thoroughly studied. [1, 19]; the canonical approach is to perform spectral clustering
on some form of the graph Laplacian. Theoretical results by [9, 14] establish statistical consistency
for this algorithm, but it is O(|V |3) and thus not suited for clustering networks with billions of nodes.
Approximations to the community detection task have been proposed, notably in [18] with statistical
guarantees based on a pertubation analysis, but this approximation is still unable to cluster a network
with billions of nodes. Spectral clustering has been shown to be parallelizable by [7], and very recent
results can cluster a billion-node graph on the order of several hours [17] using a label-propagation
method, but cluster quality has not been shown to be statistically guaranteed in either case.

Given the apparent difficulty of simultaneously satisfying all three criteria (clustering the whole
network; with statistical quality guarantees; quickly), we can now introduce a class of methods which
takes a different approach by forgoing the first condition of clustering the whole network. Local
methods for network clustering are a recent breed of algorithms which are inspired by the idea that
one rarely needs to cluster an entire billion-node network all at once. Rather, the small neighborhood
of a single node of interest should contain a lot of the information relevant to that particular node. The
development of algorithms that can reliably and instantaneously determine the community structure

around specific individuals in massive networks has been driven by [16, 4, 3, 12, 10, 15, 8]. These
results have generally come from the theoretical computer science community, and as such, cluster
quality comes in the form of guarantees on the volume of the identified partition, or the conductance of
the cut. These are traditionally graph-theoretic properties for which there are currently no translations
to properties of common statistical graph models, such as the SBM.

Our main contribution is the Mutual-Friends algorithm which can determine the set of nodes in
the ego network which are likely to belong to the same community as the ego node. Statistical
consistency is shown for this algorithm. Some of the results are analogous to those in [6], where
the friend counts (rather than mutual friend counts) are shown to separate the network communities.
Certain properties of the ego network make clustering easier, although the proofs require more subtle
manipulations in comparison.

2 The Mutual-Friends Algorithm

In this section, we introduce Algorithm 1, the Mutual-Friends algorithm, to specifically address the
problem of partitioning any given node’s list of connections. This task corresponds to detecting which
nodes in a given ego network belong to the same community as the ego node.1 The more general
task of finding communities within ego networks is tackled by [11], but they utilize node covariates
and do not provide statistical guarantees. Our method only requires the degrees of the nodes in the
ego network, using an approach adapted from [6], which estimates the community memberships of a
whole network drawn from a SBM using only the degrees of the nodes. Our algorithm exploits the
fact that in an SBM, it is usually the case that πii � πij ∀j 6= i; this makes the partition boundary
considerably more learnable.

Algorithm 1: Mutual-Friends
Data: Ego node e; mutual friend counts (D∗i)i for all neighbors i ∈ neighbors(e); and a

one-dimensional clustering algorithm cluster that outputs integer classes
Result: Ideally, the maximal set of nodes Ve such that Zi = Ze and Aie = 1 for all i ∈ Ve
begin

Ẑ ←− cluster((D∗i)i), num_clusters = 2);
m0 ←− mean((D∗i)i:Ẑi=0));
m1 ←− mean((D∗i)i:Ẑi=1));
if m0 > m1 then

return {v ∈ neighbors(e) : Ẑv = 0};
end
else

return {v ∈ neighbors(e) : Ẑv = 1};
end

end

We consider Mutual-Friends to be an algorithmic primitive, by which we mean a kind of subroutine
for a more complicated function that iterates Mutual-Friends, similarly to [5]. In practice, having
an algorithmic primitive which depends solely on mutual friend counts is appealing because this infor-
mation is likely to be either cached or optimally computable by the graph-processing architectures of
companies which host these large social networks. The probabilistic properties of Mutual-Friends
are also more easily studied compared to algorithms like Nibble and PageRank-Nibble. A better
understanding of these properties will simplify the derivation of similar properties for the more
complex algorithms that iterate this primitive.

Figure 1 illustrates how the observed mutual friend count distribution is obtained from an example
whole network, which is generated according to the following procedure:

1The ego network is the subgraph induced by including only the nodes that are connected to a chosen, fixed,
ego node. If the whole network is G = (V,E), we denote the ego node by e ∈ V , and its induced ego network
is Ge. The neighbors of e are also referred to as alters.

2

Figure 1: Even though the community structure in the whole network is totally symmetric, the ego
network is unbalanced since nodes from the same community as the ego are more likely to be in the
ego network.

1. The whole network is sampled from an SBM with parameters π11 = π22 = 0.5, π12 = 0.1,
and α = (0.5, 0.5). This corresponds to two balanced and equivalent communities, denoted
by orange and green.

2. An ego node is chosen, which happens to be green, and its alters are highlighted in red and
blue, corresponding to the orange and green communities, respectively.

3. The ego network is the subgraph induced by the red and blue nodes.

4. The mutual friend counts correspond to the degrees of the nodes in the ego network.

2.1 Terminology

We consider the case of an undirected social network with n nodes, G = (V,E). This network
is drawn from an SBM with Q true communities, with the symmetric block tie probability matrix
[πij]1≤i,j≤Q. We let (Z1, . . . , Zn) ∈ [Q]n denote the vector of community assignments, and

Zi
iid∼ Multinomial(~α; 1), where ~α = (α1, . . . , αQ) ∈ [0, 1]Q such that

∑
q αq = 1 is the vector

containing the probability any node belongs to each community. In other words, P (Zi = q) = αq
for all i and q. We assume that πii > πij for all j 6= i; this condition is commonly referred to as
assortativity.

We adopt a modification of the notation used by [6] for the ego network case. By way of comparison,
recall that [6] denote the degree of a given node i by Di :=

∑
j 6=iAij . The normalized degree is

Ti := Di/(n− 1). Then, the largest deviation of any node’s normalized degree from its expected
value is

dn := max
q∈[Q]

sup
i∈[n]:Zi=q

|Ti − π̄q|.

Note that these degrees are exchangable (but not independent). They can be thought of as being
sampled from a mixture distribution, with the mean of each component of the mixture corresponding
to the appropriate π̄q .

The preceding definitions are used by [6] to prove the consistency of an algorithm that partitions nodes
based on their empirical degrees, in the global case where the whole network is studied. We need to
redefine certain terms so they pertain to the local case. First, let D∗i :=

∑
j∈[n]\{e,i}AieAijAje, so

that

T ∗i :=
D∗i∑

i∈[n]\{e,i}Aie
.

3

Figure 2: A sequence of (normalized) mutual friend counts. The red and blue horizontal lines mark
the expected value for each community. The value of d∗n in this case would be the max blue deviation
(the blue deviation is greater than the red deviation).

Then,

d∗n := max
s∈[Q]

[
sup

i∈[n]\{e}:Zi=s,Aie=1

|T ∗i − π̌Zes|

]
,

where π̌rs := P (Aij = 1 | Aie = 1, Aje = 1, Ze = r, Zi = s). d∗n is visualized in an example in
Figure 2.
Remark 1. π̌rs can be expressed as

π̌rs =
∑
t∈[Q]

πst
πrtαt∑

u∈[Q] πruαu
.

3 Statistical Analysis of Mutual-Friends

The motivation for the main theorem comes from the following observation: clearly, if each mutual
friend count is close enough to its corresponding π̌, the gap between the ego’s community and
any other community should be easily found by using a one-dimensional clustering algorithm. [6]
provides guarantees for this task when the (Q− 1)-largest gaps are used to cluster the Q communities
in the whole (not ego) network.

Theorem 1. As long as 0 < t = O(
√

log n/n),

P (d∗n > t)
n→∞−→ 0.

The theorem provides a guarantee for the concentration of the mutual friend counts. In order to use
this theorem effectively, an additional assumption must be made on the values of π̌Zes. Of course,
π̌ZeZe

should not equal π̌Zes for any community s 6= Ze; otherwise, nodes in community s will be
assumed to be in the same community as the ego. Furthermore, if π̌ZeZe

< π̌Zes for any community
s 6= Ze, s will be taken to be the ego’s community rather than Ze.

3.1 Conditions on π and α

It turns out that the concerns in the preceding paragraph are easily avoided. To see this, assume for
simplicity of notation that the block matrix π is of the form πss = w and πrs = b for all w 6= s, i.e.
all of the within-block probabilities are w, and all of the between-block probabilities are b (similar
results can be found without this assumption, but to keep this document short we omit them). This
means that

π̌Zes =
1

π̄Ze

 ∑
t∈[Q]\{Ze,s}

πZetπstαt

 + πZes(πZeZeαZe + πssαs)



4

and

π̌ZeZe =
1

π̄Ze

 ∑
t∈[Q]\{Ze}

π2
Zetαt

 + π2
ZeZe

αZe

 .
Then, the necessary and sufficient conditions for the ego’s community to have the highest expected
mutual friend count are

π̌ZeZe − π̌Ze1 > 0
...
π̌ZeZe − π̌ZeQ > 0

⇐⇒


(w − b)(wαZe − bα1) > 0
...
(w − b)(wαZe − bαQ) > 0

⇐⇒


αZe >

b
wα1

...
αZe >

b
wαQ.

Assuming an assortative SBM (i.e. w > b), the ego community can be quite small in the overall
network. Often, w is taken such that w � b, so that the ego community will generally be identifiable
from the mutual friend counts. Note that even if α′Ze

= α′s for some s 6= Ze, the mutual friend
counts are still expected to be higher for the ego’s community, since πZeZe

> πZes. This property
endows the Mutual-Friends algorithm with a kind of robustness, as long as the whole network can
be adequately modeled with an SBM.

3.2 Clustering the Mutual Friend Counts

Once the mutual friend counts have been obtained, any reasonable one-dimensional clustering
algorithm should identify the ego’s community, up to the above conditions. As mentioned earlier,
in [6], a (Q− 1)-largest gaps algorithm is analyzed. In this local clustering case, finding the single-
largest gap should, in many cases, identify the ego community. In practice, k-means with k = 2 is
more robust to random deviations from the cluster means. The simulation results describe this in
more depth.

3.3 Perfect Recovery of the Within-community Set

The necessary and sufficient conditions for π̌ZeZe
> π̌Zes to hold are described above, but these

conditions do not guarantee that the Mutual-Friends algorithm will perform well if the clustering is
done by taking the largest gap in the mutual friend counts. In fact, even if the mutual friend counts are
clustered perfectly (with zero variance) around their cluster means, there is still a way of setting the
parameters π and α such that the largest-gap algorithm will fail to return the correct ego community.
The following results provide a value for t so that the bound in Theorem 1 is guaranteed to bound the
probability of the largest-gap algorithm making a mistake.
Remark 2. The value of t which defines the condition that the largest-gap algorithm makes zero
errors is

t <

π̌ZeZe−maxq 6=Ze π̌Zeq

2 − maxq 6=Ze π̌Zeq−minq 6=Ze π̌Zeq

2

2
.

Corollary 1. If
π̌ZeZe

− max
q 6=Ze

π̌Zeq > max
q 6=Ze

π̌Zeq − min
q 6=Ze

π̌Zeq,

then as n→∞, the probability of the largest-gap algorithm making any mistake goes to zero.

3.4 Simulated Comparisons to Spectral Clustering

Although the theoretical results show that the Mutual-Friends algorithm works quite well even for
smaller networks, competing algorithms also boast strong performance. To verify the practical utility
of the algorithm, we compare it to a localized variant of spectral clustering on the graph Laplacian,
which is the most common algorithm used for graph clustering. Spectral clustering takes the number
of communities as a parameter, K; however, in this case, we cannot use K = Q, the number of
communities in the SBM, since there may be fewer than Q communities in the ego network. Hence,
we use K = 2 inthe simulations.

For these simulations, we sample graphs from different SBMs. In all simulations, πqq = 0.1 for
all q and πqr = 0.01 for all q 6= r. This corresponds to the fully symmetric block matrix with

5

Figure 3: Blue lines depict the accuracy of Mutual-Friends. Green corresponds to spectral clus-
tering on the graph Laplacian with K = 2. When the number of clusters is small (e.g. Q = 2, 3),
Mutual-Friends performs worse than spectral clustering until the network is large enough, after
which it slightly outperforms spectral clustering. Once Q = 10, Mutual-Friends and spectral clus-
tering perform similarly. When the number of communities increases to Q = 20, Mutual-Friends
consistently outperforms spectral clustering. Figure 4 contains the FPR and FNR plots.

w = 0.1 and b = 0.01. We vary Q, to depict the relationship between the two methods when
there are few communities in the network vs. when there are many communities. As Q varies, we
set α = (1/Q, . . . , 1/Q); this corresponds to balanced community sizes. Figure 3 summarizes
these results. The simulated whole-network sizes are n = 500, 1000, 2000, . . . , 20000, with every
1000-node increment between 1000 and 20000. For each combination of network size n and number
of communities Q, 50 samples are drawn from the associated SBM. The 50 accuracy values for each
method are then averaged and connected to create the plots. The corresponding plots for the false
positive rate (FPR) and false negative rate (FNR) are given in Figure 4.

The simulations show that Mutual-Friends performs similarly to spectral clustering for small
numbers of communities. However, as the number of communities increases, Mutual-Friends
begins to outperform spectral clustering, and in general, Mutual-Friends appears to outperform
spectral clustering for large network sizes. These results do not come as a surprise, as spectral
clustering is only guaranteed to perform well when the correct number of communities is given.
In particular, we suspect that ego networks from SBMs with large values of Q have a “hairy” ego
community node cluster, in the sense that stray nodes (having Zi 6= Ze) with extremely sparse
connections to the ego’s node cluster are increasingly prevalent when Q increases. These nodes may
not be discernable from the ego’s community to spectral clustering, but they have low mutual friend
counts and thus are correctly classified by Mutual-Friends.

Accuracy is not the only metric for comparison: after all, we are after an algorithm which can reliably
learn about the graph local to some node as quickly as possible. The runtime of Mutual-Friends is
governed by two factors: first is how long the graph database takes to return the mutual friend counts
of a given node; second is how long it takes to run one-dimensional clustering on the counts. The first
task is assumed to be quite fast, especially in comparison to general graph queries, as this information
is likely to be cached. One-dimensional clustering can be done in linear time by finding the largest
gap in the unsorted vector of mutual friend counts.

This is in contrast to most implementations of spectral clustering which require constructing the adja-
cency matrix and graph Laplacian. In fact, our implementation of the Mutual-Friends algorithm in
Python is typically at least an order of magnitude faster than the SciPy implementation of spectral
clustering [13]. Furthermore, there are currently no established guarantees (statistical or not) for
spectral clustering when it is used for community detection on ego networks.

Figure 4 demonstrates that Mutual-Friends matches the performance of spectral clustering on
large networks. As for FPR, spectral clustering performs better when Q = 2, possibly because we
are setting the number of communities to K = 2 for spectral clustering. For larger values of Q,
Mutual-Friends is either comparable to or outperforms spectral clustering.

4 Recovering the Entire Ego Community

We introduced Mutual-Friends as a primitive from which to build more complex procedures. One
such procedure is recovering the entire set of nodes belonging to the same community as the ego node.
Several modified PageRank algorithms essentially perform this task: they take as input some starting
node and use a biased random walk to cut the graph around this node [4, 16]. Each community of

6

Figure 4: In the top four plots, blue lines depict the FNR (proportion of incorrect classifications out
of the nodes that are truly outside the ego community) of Mutual-Friends. Green corresponds to
spectral clustering on the graph Laplacian with K = 2. Lower is better. The bottom four plots are the
same but they depict the FPR (proportion of incorrect classifications out of the nodes that are truly
inside the ego community).

a stochastic block model essentially acts as an Erdös-Renyi graph. The diameter of such graphs is
known to be quite small (this is true of real-world networks as well).

This fact suggests the naïve procedure outlined in Algorithm 2 for discovering the whole ego
community using Mutual-Friends. Within 20 iterations of Mutual-Friends on a graph with 2000
nodes drawn from an SBM, we are able to recover approximately 98% of all of the nodes in the same
community as the ego node in the graph. For reference, only about 22% of all of the nodes in the
same community as the ego node are actually contained in the ego network, so with a small number
of iterations of the Mutual-Friends algorithm we are able to recover several times more nodes in
the same communtiy as the ego node. Figure 5 illustrates several runs of Algorithm 2.

Algorithm 2: Recoving the entire community that the ego belongs to
Data: Ego node e; number of steps to take N
Result: Ideally, the maximal set of nodes S such that Zi = Ze and for all i ∈ S
begin

V←− {e};
(D∗i)i ←− neighbors(e);
S ←− Mutual-Friends(e, (D∗i)i);
for i ∈ [N] do
V ∼ Unif(S \V);
V←− V ∪ {V};
(D∗i)i ←− neighbors(V);
S ←− S ∪ Mutual-Friends(V, (D∗i)i);

end
return S;

end

5 Conclusions

Mutual-Friends is introduced as a competing method within the local graph clustering literature.
It utilizes the sampling bias observed in edge-induced subgraphs to obtain a good clustering result
for large networks with many communities that can be modeled as an SBM. Although it solves a
sub-problem of the one solved by modified PageRank methods, Algorithm 2 is proposed as a simple
extension which competes directly with such methods.

Although Mutual-Friends has good theoretical properties and compares favorably to standard
spectral-based techniques, a challenge to applying Mutual-Friends to real social network data is

7

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

Proportion of Whole Ego Community Found

Number of Iterations

P
ro

po
rt

io
n

Figure 5: Each line represents a single run of Algorithm 2 for increasing iteration number N . All
runs were performed on a single sample from an SBM with parameters w = 0.2 and b = 0.01 with
α = (0.5, 0.5).

that social networks are not generally able to be modeled with a standard SBM since users do not
generally belong to one community only. This means that the mutual friend counts will not be clearly
separated and the algorithm will not detect an ego community.

Mixed membership SBMs (MMBs) [2] are a natural generalization of the standard SBM, wherein
nodes, in some sense, belong to a mixture of communities. Having a local theory of such a model
is therefore naturally of interest. The Mutual-Friends algorithm is essentially limited to using
one-hop information about the graph, which is a severe reduction compared to utilizing the full
graph topology. There may be a way of incorporating some limited knowledge of the local graph
connectivity (such as some two-hop data) to improve the resolution of the method just enough to
reliably learn the more complicated mixed-membership model.

Furthermore, we use standard spectral clustering with K = 2 as the comparison method. It especially
does not perform as well as Mutual-Friends when the number of communities is large. To
understand why should require a better understanding of the top two eigenvectors whenQ is especially
large. Furthermore, the choice of K = 2 is to make the comparison to Mutual-Friends fair as it is
a fully nonparametric procedure. However, a better choice of K will likely lie between 2 and the
number of unique communities observed in the ego network (and it is possibly not equal to this upper
bound).

Acknowledgments

We thank Cosma Shalizi, Brian Junker, Jing Lei, Neil Spencer, Alden Green, Momin Malik, and
the rest of Stat-Networks group at Carnegie Mellon for many valuable discussions throughout the
development of this work. This work was partially supported by AFOSR grant #FA9550-14-1-0141.

8

References
[1] Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the stochastic block model.

IEEE Transactions on Information Theory, 62(1):471–487, 2016.

[2] Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed membership stochastic
blockmodels. Journal of Machine Learning Research, 9(Sep):1981–2014, 2008.

[3] Reid Andersen, Christian Borgs, Jennifer Chayes, John Hopcraft, Vahab S Mirrokni, and Shang-Hua Teng.
Local computation of pagerank contributions. In International Workshop on Algorithms and Models for
the Web-Graph, pages 150–165. Springer, 2007.

[4] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors. 2006 47th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), 2006.

[5] Christian Borgs, Michael Brautbar, Jennifer Chayes, Sanjeev Khanna, and Brendan Lucier. The power
of local information in social networks. In International Workshop on Internet and Network Economics,
pages 406–419. Springer, 2012.

[6] Antoine Channarond, Jean-Jacques Daudin, and Stéphane Robin. Classification and estimation in the
stochastic blockmodel based on the empirical degrees. Electronic Journal of Statistics, 6:2574–2601, 2012.

[7] Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and Edward Y Chang. Parallel spectral cluster-
ing in distributed systems. IEEE transactions on pattern analysis and machine intelligence, 33(3):568–586,
2011.

[8] Kimon Fountoulakis, Xiang Cheng, Julian Shun, Farbod Roosta-Khorasani, and Michael W Mahoney.
Exploiting optimization for local graph clustering. arXiv preprint arXiv:1602.01886, 2016.

[9] Jing Lei and Alessandro Rinaldo. Consistency of spectral clustering in stochastic block models. The
Annals of Statistics, 43(1):215–237, Feb 2015.

[10] Yixuan Li, Kun He, David Bindel, and John Hopcroft. Overlapping community detection via local spectral
clustering. arXiv preprint arXiv:1509.07996, 2015.

[11] Julian Mcauley and Jure Leskovec. Discovering social circles in ego networks. ACM Transactions on
Knowledge Discovery from Data, 8(1):1–28, Feb 2014.

[12] Lorenzo Orecchia and Zeyuan Allen Zhu. Flow-based algorithms for local graph clustering. In Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1267–1286. Society for
Industrial and Applied Mathematics, 2014.

[13] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in
python. Journal of Machine Learning Research, 12(Oct):2825–2830, 2011.

[14] Karl Rohe, Sourav Chatterjee, and Bin Yu. Spectral clustering and the high-dimensional stochastic
blockmodel. Ann. Statist., 39(4):1878–1915, 08 2011.

[15] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael W Mahoney. Parallel local
graph clustering. arXiv preprint arXiv:1604.07515, 2016.

[16] Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs and its
application to nearly-linear time graph partitioning. CoRR, abs/0809.3232, 2008.

[17] Lu Wang, Yanghua Xiao, Bin Shao, and Haixun Wang. How to partition a billion-node graph. 2014 IEEE
30th International Conference on Data Engineering, Mar 2014.

[18] Donghui Yan, Ling Huang, and Michael I Jordan. Fast approximate spectral clustering. In Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 907–916.
ACM, 2009.

[19] Yunpeng Zhao, Elizaveta Levina, and Ji Zhu. Community extraction for social networks. Proceedings of
the National Academy of Sciences, 108(18):7321–7326, 2011.

9

Proof of Theorem 1

The proof of Theorem 1 requires a concentration-type bound for T ∗i , the normalized mutual friend count. This is
possible by the following lemma, regarding the unnormalized mutual friend count, D∗i .

Lemma 1.

D∗i :=
∑

j∈[n]\{e,i}

AieAijAje

∣∣∣∣∣∣Ze, Zi = s, {A`e} 6̀=i, Aie = 1 ∼ Bin

 ∑
j∈[n]\{e,i}

aje, π̌zes

 .

This result depends on a rather intricate set of conditional random variables and events. Several conditions must
be met in order for mathematically-useful statements about ego neighbors to be made: the block membership
of each neighbor should be known (as usual), but the block membership of the ego node itself should also be
conditioned on (much of the behavior of the ego network is dictated by the ego node’s own block membership);
in addition, the event that the neighbors are connected to the ego node has to be conditioned on.

Proof of Lemma 1. For each term in the sum, observe that

P (AijAje = 1|Ze, Zi = s, {A`e}` 6=i, Aie = 1) =

{
0, Aje = 0

P (Aij = 1|Ze, Zi = s, {A`e} 6̀=i, Aie = 1) , Aje = 1

=

{
0, Aje = 0

P (Aij = 1|Ze, Zi = s,Aje, Aie = 1) , Aje = 1

=

{
0, Aje = 0

π̌Zes, Aje = 1.

In particular, this implies that {Aij |Ze, Zi, {A`e} 6̀=i}j for all j ∈ [n] \ {e, i} : Aje = 1 are identically and
independently distributed (since they are d-separated) as Bernoulli random variables with probability π̌Zes.

The distribution of D∗i conditional on the above conditioning set is therefore

P (D∗i = k|Ze, Zi = s, {A`e}` 6=i, Aie = 1) = P

 ∑
j∈[n]\{e,i}

AijAje = k

∣∣∣∣∣∣Ze, Zi = s, {A`e}` 6=i, Aie = 1


= P

 ∑
j∈[n]\{e,i}:Aje=1

Aij = k

∣∣∣∣∣∣Ze, Zi = s, {A`e} 6̀=i, Aie = 1

 ,

which, by the preceding paragraph, is binomial with the desired parameters.

We also use the fact that as the network grows, the number of nodes in each community will concentrate. We
denote by Bq the number of nodes in the ego network which are in community q:

Bq|{Zi}i
iid∼ Bin

nq :=
∑

i∈[n]\{e}

1zi=q, πzeq

 .

Let Nq be the (random) number of nodes in community q, and nq be realization of this random variable. Then,
the simultaneous concentration of all community sizes within the ego network is

B :=
⋂

q∈[Q]

{
|Bq −NqπZeq| ≤

√
n logn

}
.

Lemma 2. The probability that at least one block fails to concentrate, conditioned on the block assignments,
goes to zero as 1/n2. In other words,

P
(
BC |{Zi}i

)
∼ 1

n2
.

10

Proof of Lemma 2. The probability that at least one block fails to concentrate according to B is:

P
(
BC |{Zi}i

)
= P

 ⋃
q∈[Q]

{
|Bq −NqπZeq| >

√
n logn

}∣∣∣∣∣∣Z


≤
∑
q∈[Q]

P
(
|Bq −NqπZeq| >

√
n logn

∣∣∣Z)
≤
∑
q∈[Q]

2 exp

{
−2

n logn

n

}

= 2
Q

n2
.

Proof of Theorem 1.

P (d∗n > t) ≤ E
[
P (d∗n > t|B, z)P (B|Z) + P

(
BC |Z

)]
.

By Lemma 2, the second term in the expectation goes to zero independently of t, since it is not a function of t.
Hence,

P (d∗n > t) ≤ E [P (d∗n > t|B, Z)] + o(1)

= E [P (d∗n > t|B, Z, {A`e}`)] + o(1)

= E

P
 ⋃

s∈[Q]

⋃
i∈[n]\{e}:Zi=s,Aie=1

{|T ∗i − π̌Zes| > t}|B, Z, {A`e}`

+ o(1)

≤ E

∑
s∈[Q]

∑
i∈[n]\{e}:Zi=s,Aie=1

P (|T ∗i − π̌Zes| > t|B, Z, {A`e}`)

+ o(1)

= E

∑
s∈[Q]

∑
i∈[n]\{e}

1Zi=sAieP (|T ∗i − π̌Zes| > t|B, Z, {A`e}`)

+ o(1)

=
∑

{a`e}`∈{0,1}n−1

∑
z∈[Q]n

∑
s∈[Q]

∑
i∈[n]\{e}

1zi=saieP (|T ∗i − π̌Zes| > t|B, Z, {A`e}`)P ({A`e}`, Z) + o(1)

=
∑
{a`e}`

∑
s∈[Q]

∑
i∈[n]\{e}

∑
ze∈[Q]

aieP (|T ∗i − π̌Zes| > t|B, Ze, Zi = s, {A`e}`)P ({A`e}`, Ze, Zi = s) + o(1)

=
∑
s∈[Q]

∑
ze∈[Q]

∑
i∈[n]\{e}

∑
{a`e}`

aieP (|T ∗i − π̌zes| > t|B, Ze, Zi = s, {A`e} 6̀=i, Aie = 1)P ({A`e}` 6=i, Aie = 1, Ze, Zi = s) + o(1)

≤
∑
{a`e}`

∑
s∈[Q]

∑
ze∈[Q]

∑
i∈[n]\{e}

aie2 exp

−2
∑
q∈[Q]

(
nπzeq −

√
n logn− 1

)
t2

P ({A`e}` 6=i, Aie = 1, Ze, Zi = s) + o(1).

We can simplify P ({A`e}` 6=i, Aie = 1, Ze, Zi = s) as:

P ({A`e}` 6=i, Aie = 1, Ze, Zi = s) = P (Aie = 1|Ze, Zi = s)P ({A`e} 6̀=i|Ze, Zi = s)P (Ze, Zi = s)

= πzes

 ∏
j∈[n]\{e,i}

π̄
aje
ze (1− π̄ze)1−aje

P (Ze)P (Zi = s)

= πzes

 ∏
j∈[n]\{e,i}

π̄
aje
ze (1− π̄ze)1−aje

αzeαs

= πzes

(
π̄
∑

j∈[n]\{e,i} aje
ze (1− π̄ze)n−2−

∑
j∈[n]\{e,i} aje

)
αzeαs.

11

Going back to the bound of P (d∗n > t), we make the substitution k =
∑

j∈[n]\{e,i} aje:

P (d∗n > t) ≤
∑
{a`e}

∑
s∈[Q]

∑
ze∈[Q]

∑
i∈[n]\{e}

aie2 exp

−2

∑
q∈[Q]

nπzeq −
√
n logn− 1

 t2

πzes

(
π̄k
ze(1− π̄ze)n−2−k

)
αzeαs + o(1)

=

n−1∑
k=0

(
n− 1

k

) ∑
s∈[Q]

∑
ze∈[Q]

(k + 1)2 exp

−2

∑
q∈[Q]

nπzeq −
√
n logn− 1

 t2

πzesπ̄
k
ze(1− π̄ze)n−2−kαzeαs + o(1)

= 2
∑
s∈[Q]

∑
ze∈[Q]

πzesαzeαs

1− π̄ze

exp

−2

∑
q∈[Q]

nπzeq −
√
n logn− 1

 t2

 (1 + (n− 1)π̄ze) + o(1),

which converges to 0 as n→∞ for all fixed t > 0 as well as t = O(
√

log(n)/n). Notably, all of the constants
are known in this bound; the additional asymptotic term introduced by Lemma 2 is used for convenience, but its
constants are known as well.

12

	Introduction
	The Mutual-Friends Algorithm
	Terminology

	Statistical Analysis of Mutual-Friends
	Conditions on and
	Clustering the Mutual Friend Counts
	Perfect Recovery of the Within-community Set
	Simulated Comparisons to Spectral Clustering

	Recovering the Entire Ego Community
	Conclusions

