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Abstract

We study the crucial problem of MLE existence for the directed random graph
model proposed by Holland and Leinhardt [3], known as the p1 model, which
describes dyadic interactions in a social network. We show that necessary and
sufficient conditions for the existence of the MLE are based on polyhedral con-
ditions, which offer a systematic way to characterize (in a combinatorial fashion)
sample points leading to a nonexistent MLE, and non-estimability of the proba-
bility parameters under a nonexistent MLE. While specifics of nonexistence are
best understood for networks of relatively small size, there are important implica-
tions of our results for large networks, since current algorithms and software for
fitting p1 and other exponential random graph models (ERGMs) have no simple
mechanism for detecting non-existence and identifying non-estimable parameters.

Existence of the maximum likelihood estimator (MLE) is a central issue in the theory and practice
of exponential families: statistical inference becomes ill-defined and unfeasible under a nonexis-
tent MLE ([4,5]), as only certain combinations of the true parameters are actually estimable. For
ERGMs, studying nonexistence of the MLE has yielded significant insights into the properties of
these models such as degeneracy [2,4]. For more specialized network models based on linear expo-
nential families, this theory can be further refined and has significant algorithmic implication: see,
e.g. [5], for the case of the β-model.

In this article we are concerned with the problem of nonexistence of the MLE for the p1 model of
Holland and Leinhardt ([3]), a very popular class of statistical models for analyzing social networks.
By representing the p1 as a linear exponential family, we are able to characterize in a geometric
fashion for which patterns of observed networks the MLE of the model parameter exists and which
model parameters are estimable under a nonexistent MLE. Unlike the β-model, the p1 turns out
to have much more complicated geometric properties which makes the task of characterizing all
instances of network configurations leading to a nonexistent MLE more challenging.

The Holland and Leinhardt p1 model [3] focuses on the occurrences of directed and bi-directed
edges in a random graph representing the interactions among the units of a network. For every pair
of nodes (i, j) we define the probability vector

pi,j = (pi,j(0, 0), pi,j(1, 0), pi,j(0, 1), pi,j(1, 1)) (1)

containing the probabilities of the four possible edge types: pi,j(1, 0), pi,j(0, 1) and pij(1, 1) denote
the probabilities of the edge configurations i→ j, i← j and i←→ j, respectively, and pi,j(0, 0) is
the probability that there is no edge between i and j in the network. (Thus, 1 denotes the outgoing
side of an edge.) By symmetry, pi,j(a, b) = pj,i(b, a), for all a, b ∈ {0, 1}, and the four proba-
bilities for each dyad sum to 1. The

(
n
2

)
dyads are modelled as mutually independent draws from

multinomial distributions with class probabilities pi,j , i < j. Specifically, the p1 model specifies the
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multinomial probabilities of each dyad (i, j) in logarithmic form as follows:

log pi,j(0, 0) = λij
log pi,j(1, 0) = λij + αi + βj + θ
log pi,j(0, 1) = λij + αj + βi + θ
log pi,j(1, 1) = λij + αi + βj + αj + βi + 2θ + ρi,j .

(2)

The parameter αi quantifies the effect of an outgoing edge from node i, the parameter βj instead
measures the effect of an incoming edge into node j, while ρi,j controls the added effect of re-
ciprocated edges (in both directions). The parameter θ measures the propensity of the network to
have edges and, therefore, controls the “density” of the graph. The parameters {λi,j : i < j} are
normalizing constants to ensure that the 4 probabilities for each each dyad (i, j) sum to 1, and need
not be estimated. Note that, in order for the model to be identifiable, additional linear constraints
need to be imposed on its parameters (see [3]). Different ariants of the p1 model can be obtained
by constraining the model parameters, e.g., (1) ρij = 0, no reciprocal effect; (2) ρij = ρ, constant
reciprocation; (3) ρij = ρ+ ρi + ρj , edge-dependent reciprocation.

Our data take the form of a single observed network. Thus, each dyad (i, j) is observed in only one of
its four possible states and this one observation is a random vector in R4 with a Multinomial(1, pi,j)
distribution. As a result, data are sparse and, even though the dyadic probabilities are strictly positive
according to the defining equations (2), only some of the model parameters may be estimated from
the data. Extension to the case in which the dyads are observed multiple times are straightforward.

For a network on n nodes, we represent the vector of 2n(n− 1) dyadic probabilities as

p = (p12, p13, . . . , pn−1,n) ∈ R2n(n−1),

where, for each i < j, pij is given as in (1). The p1 model is the set of all probability distributions
that satisfy the Holland-Leinhardt model (2). By construction, the p1 model is log-linear or toric:
each set of probabilities p satisfying the p1 model is such that log p is in the linear space spanned by
the rows of some design matrix A, which can be constructed as follows (this construction is by no
means unique and leads to rank-deficient matrices, though it is rather simple). The columns of A are
indexed by the entries of the vectors pi,j , i < j, where the pi,j’s are ordered lexicographically, and
its rows by the model parameters, ordered arbitrarily. The (r, c) entry of A is equal to the coefficient
of the c-th parameter in the logarithmic expansion of the r-the probability as indicated in (2). In
particular, notice that the entries of A can only be 0, 1 or 2. For example, in the case ρij = ρ+ρi+ρj ,
the matrix A has

(
n
2

)
+ 3n+ 2 rows. When n = 3, the design matrix corresponding to this model is

λ12
λ13
λ23
θ
α1
α2
α3
β1
β2
β3
ρ
ρ1
ρ2
ρ3

p1,2 p1,3 p2,3
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1
0 1 1 2 0 1 1 2 0 1 1 2
0 1 0 1 0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 1

Let θ = {λi,j , αi, βj , θ, ρ, ρi, ρj , i < j} be the vector of model parameters, whose dimension d
depends on the type of model restrictions. Then, using the design matrix A, one can readily verify
that the model has the log-linear representation log p = A>ζ. Equivalently,

pi,j(a, b) = eλij (eαi)a(eαj )b(eβi)b(eβj )a(eθ)a+b(eρij )min(a,b), ∀i < j, ∀a, b ∈ {0, 1}. (3)

We denote withMA ⊂ {0, 1}2n(n−1) the set of all such edge probabilities and with I the coordinate
set of each point in MA. Notice that I is comprised by

(
n
2

)
4-tuples indexed by ((i, j) : i < j), with

the elements of the (i, j)th tuple being the coordinates of the vector (1).

Let Xn ⊂ {0, 1}2n(n−1) denote the sample space, i.e. the set of all observable networks on n nodes.
Then, for every x ∈ Xn, x = (x1,2, x1,3, . . . , xn−1,n), where each of the

(
n
2

)
subvectors xi,j is

a vertex of ∆3, the 4-simplex. In fact F is also the coordinate set of x This way of representing

2



a bidirected network on n nodes with a highly-constrained 0/1 vector of dimension 2n(n − 1)
may appear cumbersome and redundant, especially compared to the original parametrization of
[3], requiring only n(n−1)

2 bits. The reason for our choise is simple and important: only with this
redundant parametrization the model with the reciprocity parameter becomes a linear exponential
family.

For any point x ∈ Xn, the likelihood function is the function ` : MA → [0, 1] given by

`x(p) =
∏
f∈F

p(f)x(f), (4)

and the maximum likelihood estimate (MLE) of p0 is p̂ = argmaxp∈MA
`x(p). Despite `x being

smooth and concave on its domain for each x ∈ Xn, there exist points x ∈ Xn for which the unique
supremum of `x is achieved on the boundary of MA, and thus it will have some zero coordinates. In
this case, the MLE of p0 does not exist. Indeed, if a vector p with zero entries is to satisfy equations
(3), then some of the entries in θ must be equal to −∞. While it is easy to see that zero entries in
the vector of sufficient statistics Ax will lead to such a problem, our analysis below shows that there
are many more patterns of zero entries in the vector of edge counts which also cause the MLE to be
undefined.

Following the analysis in [5] (see [1] for details), the convex support for this family is the polytope
obtained as the Minkowski sum PA :=

∑
i<j Ai,j , where Ai,j is the sub-matrix of A comprised by

the four columns referring to the dyad (i, j).

Theorem 0.1. The MLE of a p1 model with design matrix A exists if and only if Ax s in the interior
of PA. A point Ax belongs to the interior of some face F of PA if and only if there exists a setF ⊂ I
such that

Ax = Ap, (5)

where p is the closure of MA and is such that p(f) ∈ {0, 1} if f 6∈ F and p(f) ∈ (0, 1) otherwise
The set F is uniquely determined by the face F and is the maximal set for which (5) holds.

The sets F are called facial sets and give a combinatorial representation of the boundary (i.e. the
faces) of PA. The above theorem states that, given an observed network x ∈ Xn the MLE of the
parameters exists if and only of Ax ∈ ri(Xn) and when the MLE does not exist because Ax belongs
to the interior of some face F of PA, only the probability parameters in the corresponding facial set
F are estimable. Thus, the collections of the complements of all facial sets describe precisely the set
of all possible non-estimable network probabilities as across all possible instances of non-existent
MLEs. Furthermore, to characterize the network configurations x for which the MLE fais to exists,
one must study the faces of PA, a daunting task whose combinatorial complexity is very high and
rapidly increasing with n.

The following lemma shows tht one can always replace PA with the larger but simpler polyhedron
CA := cone(A) to derive it face lattice. This is result is of practical importance because the face
lattice of CA can be handled by algortithms that scale better, as we show in our numerical experi-
ments.

Lemma 0.1. For any p1 model with associated design matrix A, the MLE exists if and only if
Ax ∈ ri(CA), and the facial sets of PA are also facial sets of CA.

Numerical Experiments

We describe some numerical experiments illustrating the reduction in complexity given by
Lemma 0.1. Table 1 displays the number of vertices of the polytopes PA for the three p1 model
specifications and various networks sizes. The last column of the table contains the number of
columns of the design matrix, which is also the number of extreme rays of the marginal cone CA.
In comparison, the number of vertices of PA, whose determination is computationally very hard, is
very large and grows extremely fast with n.

In Table 2 we report the number of facets, dimensions and ambient dimensions of the cones CA for
different values of n and for the three specification of the reciprocity parameters ρi,j . This provides
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n ρi,j = 0 ρi,j = ρ ρ = ρi + ρj 2n(n− 1)

3 62 62 62 12
4 1,862 2,415 3,086 24
5 88,232 158,072 347,032 40

Table 1: Number of vertices for the polytopes PA for different specifications of the p1 model and
different network sizes. Computations carried out using minksum. The last column indicates the
number of columns of the design matrix A, which correspond to the number of generators of CA.

n ρi,j = 0 ρi,j = ρ ρ = ρi + ρj
Facets Dim. Ambient Dim. Facets Dim. Ambient Dim. Facets Dim. Ambient Dim.

3 30 7 9 56 8 10 15 10 13
4 132 12 14 348 13 15 148 16 19
5 660 18 20 3,032 19 21 1,775 23 26
6 3,181 25 27 94,337 26 28 57,527 31 34

Table 2: No. of facets, dimensions and ambient dimensions of the cones CA for different specifica-
tions of p1 and different network sizes. The no. of facets of CA equals the no. of facets of PA plus(
n
2

)
. These additional facets corresponding to the sampling constraints of one observation per dyad.

an indirect measure of the complexity of these models and of the non-zero patterns in extended
MLEs, and shows how quickly the complexity of p1 models may scale with the network size n.

The case n = 3. The sample space consists of 43 = 64 possible networks. When ρi,j = 0 for all i
and j, there are 63 different observable sufficient statistics, but only one belongs to ri(PA) and thus
leads to the existence of the MLE. This sufficient statistic corresponds to the two networks[ × 0 1

1 × 0
0 1 ×

]
and

[ × 1 0
0 × 1
1 0 ×

]
.

where the associated MLE is a 12-dimensional vector whose entries are all 0.25. The polytope PA

has 62 vertices and 30 facets. When ρi,j = ρ 6= 0 or ρi,j = ρi + ρj the MLE never exists.

The case n = 4. The sample space contains 4096 observable networks. If ρi,j = 0, there are 2, 656
different observable sufficient statistics, only 64 of which yield existent MLEs. Overall, out of the
4, 096 possible networks, only 426 have MLEs. When ρi,j = ρ 6= 0, there are 3, 150 different
observable sufficient statistics, only 48 of which yield existent MLEs. Overall, out of the 4, 096
possible networks, only 96 have MLEs. When ρi,j = ρi + ρj , there are 3, 150 different observable
sufficient statistics and the MLE never exists.

The case n = 5. The sample space consists of 410 = 1, 048, 576 different networks. If ρi,j = 0,
there are 225, 025 different sufficient statistics, and the MLE exists for 7, 983. If ρi,j = ρ 6= 0
the number of distinct sufficient statistics is 349, 500, and the MLE exists in 12, 684 cases. Finally,
when ρi,j = ρi + ρj , there are 583, 346 different sufficient statistics and the MLE never exists.

While specifics of nonexistence are best understood for networks of relatively small size, there are
important implications of our results for large networks, since current algorithms and software for
fitting p1 and other exponential random graph models (ERGMs) have no simple mechanism for
detecting non-existence and focusing in on those parameters in the model that are estimable. This is
separate from the degeneracy problems well-documented for ERGMs, cf. [2,4] . We believe that the
nonexistence problem is likely to be especially severe for some forms of ERGMs in common use
among social network practitioners.
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