Refereed Publications (Journals and Conferences)

  • Li, G., Wu, W., Chi, Y., Ma, C., Rinaldo, A. and Wei, Y. (2024). Sharp high-probability sample complexities for policy evaluation with linear function approximation, to appear in iEEE Transactions on Information Theory arXiv

  • Nguyen, H., Ho, N. and Rinaldo, A. (2024). Sigmoid Gating is More Sample Efficient than Softmax Gating in Mixture of Experts, NeurIPS 2024 arXiv

  • Wang, F., Li, W., Padilla, O. H., Yu, Y. and Rinaldo, A. (2024). Multilayer random dot product graphs: Estimation and online change point detection. To appear in JRSS. arXiv

  • Nguyen, H., Ho, N. and Rinaldo, A. (2024). On Least Squares Estimation in Softmax Gating Mixture of Experts, ICML 2024 arXiv

  • Yi, Y., Madrid Padilla, O.H., Wang, D. and Rinaldo, A. (2024+). Optimal network online change point localisation. To appear in SIMODS arXiv

  • Wu, W., Kim, J. and Rinaldo, A. (2024). On the estimation of persistence intensity functions and linear representations of persistence diagrams. AISTATS 2024. arXiv

  • Shin, J., Ramdas, A. and Rinaldo, A. (2023). E-detectors: a nonparametric framework for online changepoint detection. The New England Journal of Statistics in Data Science, 1-32. arXiv

  • Li, W., Wang, D. and Rinaldo, A. (2023). Divide and Conquer Dynamic Programming: An Almost Linear Time Change Point Detection Methodology in High Dimensions. ICML 2023. arXiv

  • Madrid Padilla, O.H., Yu, Y., Wang, D. And Rinaldo, A. (2023+). A Note on Online Change Point Detection. To appear in Sequential Analysis arXiv

  • Li, W., Wang, D. and Rinaldo, A. (2022). Detecting Abrupt Changes in Sequential Pairwise Comparison Data, NeurIPS 2022. arXiv

  • Shrotriya, S. And Li, W. and Rinaldo, A. (2022). The Performance of the MLE in the Bradley-Terry-Luce Model in \(\ell_\infty\)-Loss and under General Graph Topologies. UAI 2022. arXiv

  • Bong, H. And Rinaldo, A. (2021). Generalized Results for the Existence and Consistency of the MLE in the Bradley-Terry-Luce Model. ICML 2022. arXiv

  • Wang, F., Madrid Padilla, O.H., Yu, Y. and Rinaldo, A. (2022). Denoising and change point localisation in piecewise-constant high-dimensional regression coefficients, AISTATS 2022 (oral presentation). arXiv

  • Patil, P., Rinaldo, A. And Tibshirani, R. (2022). Estimating Functionals of the Out-of- Sample Error Distribution in High-Dimensional Ridge Regression. AISTATS 2022.

  • Madrid Padilla, O.H., Yu, Y. and Rinaldo, A. (2021). Optimal partition recovery in general graphs. AISTATS 2022. arXiv

  • Madrid Padilla, O.H., Yu, Y., Wang, D. And Rinaldo, A. (2022+). Optimal nonparametric multivariate change point detection and localization, IEEE Transactions on Information Theory, 68(3), 1922-1944. arXiv R code

  • Shin, J., Ramdas, A., Rinaldo, A. (2021). Nonparametric iterated-logarithm extensions of the sequential generalized likelihood ratio test, IEEE Journal on Selected Areas in Information Theory, 691-704 arXiv code

  • Shin, J., Ramdas, A., Rinaldo, A. (2021). On the bias, risk and consistency of sample means in multi-armed bandits, SIAM Journal on Mathematics of Data Science (SIMODS), 3(4), 1278–1300. arXiv

  • Madrid Padilla, O.H., Yu, Y. and Rinaldo, A. (2021). Lattice partition recovery with dyadic CART. NeurIPS 2021. arXiv

  • Madrid Padilla, O.H., Yu, Y., Wang, D. and Rinaldo, A. (2021). Optimal nonparametric change point detection and localization, Electronic Journal of Statistics, 15(1), 1154-1201. arXiv R code

  • Wen, Q., Wang, D., Yu, Y., Rinaldo, A. and Willett, R. (2021). Localizing Changes in High-Dimensional Regression Models. AISTASTS 2021. arXiv

  • Patil, P., Rinaldo, A., Tibshirani, R. and Wei, Y. (2021). Uniform consistency of cross validation estimators for high-dimensional ridge regression. AISTASTS 2021.

  • Wang, D., Yu. Y. and Rinaldo, A. (2021). Optimal Covariance Change Point Detection in High Dimensions, Bernoulli, 27(1): 554-575. arXiv

  • Wang, D., Yu. Y. and Rinaldo, A. (2020). Optimal Change Point Detection and Localization in Sparse Dynamic Networks, Annals of Statistics}, 49(1), 203-232. arXiv R code

  • Bong, H., Li, W., Shrotriya, S. and Rinaldo, A. (2020). Nonparametric Estimation in the Dynamic Bradley-Terry Model, AISTASTS 2020. arXiv

  • Kim, J. Shin, J., Chazal, F., Rinaldo, A. and Wasserman, L. (2020). Homotopy Reconstruction via the Cech Complex and the Rips Complex, to appear in SoCG 2020. arXiv

  • Sadeghi, K. and Rinaldo, A. (2020). Hierarchical Models for Independence Structures of Networks, Statistica Neerlandica, 74(3), 439-457. arXiv

  • Wang, D., Yu, Y. and Rinaldo, A. (2020). Univariate Mean Change Point Detection: Penalization, CUSUM and Optimality, Electronic Journal of Statistics, 14(1), 1917-1961. arXiv

  • Shin, J., Ramdas, A., Rinaldo, A. (2020). On conditional versus marginal bias in multi-armed bandits, ICML 2020. arXiv

  • Wang. D., Lu, X. and Rinaldo, A. (2019). DBSCAN: Optimal Rates For Density-Based Cluster Estimation, Journal of Machine Learning Research, 20(170), 1−50. arXiv

  • Shin, J., Ramdas, A., Rinaldo, A. (2019). Are sample means in multi-armed bandits positively or negatively biased? NeuriPS 2019. ariXv

  • Gu, X., Akoglu, L. and Rinaldo, A. (2019). Statistical Analysis of Nearest Neighbor Methods for Anomaly Detection, NeurIPS 2019. arXiv

  • Aamari, E., Kim, J., Chazal, F., Bertrand, M., Rinaldo, A., Wasserman, L. (2019). Estimating the Reach of a Manifold, Electronic Journal of Statistics, 13(1), 1359–1399. arXiv

  • Rinaldo, A., Wasserman, L. and G’Sell, M. (2019). Bootstrapping and sample splitting for high-dimensional, assumption-lean inference, the Annals of Statistics, 47(6), 3438-3469. arXiv

  • Kim, J., Shin, J., Rinaldo, A. and Wasserman, L. (2019). Uniform Convergence Rate of the Kernel Density Estimator Adaptive to Intrinsic Dimension, ICML 2019. arXiv

  • Kim, J. Rinaldo, A. and Wasserman, L. (2019). Minimax Rates for Estimating the Dimension of a Manifold, Journal of Computational Geometry, 10(1), 42–95. arXiv

  • Rinaldo, A., Lauritzen, S. and Sadeghi, K. (2019). On Exchangeability in Network Models. Journal of Algebraic Statistics, 10(1), 85–14. arXiv

  • Lauritzen, S., Rinaldo, A. and Sadeghi, K. (2018), Random Networks, Graphical Models, and Exchangeability (2019), the Journal of the Royal Statistical Society, Series B, 30(3), 481–508. arXiv

  • Tibshirani, R.J., Rinaldo, A., Tibshirani, R. and Wasserman, L. (2018). Uniform Asymptotic Inference and the Bootstrap After Model Selection, the Annals of Statistics, 46(3), 1255–1287. arXiv

  • Chazal, F., Fasy, B.T., Lecci, F., Michel, B., Rinaldo, A., Wasserman, L., (2018), Robust Topological Inference: Distance-to-a-Measure and Kernel Distance, the Journal of Machine Learning Research, 18, 1–40. arXiv

  • Lin, K., Sharpnack, J., Rinaldo, A. and Tibshirani, R.J. (2017). Approximate Recovery in Changepoint Problems, from ℓ2 Estimation Error Rates, NIPS 2017. arXiv

  • Balakrishnan, S., Kolar, M., Rinaldo, A. and Singh, A. (2017). Recovering Block-structured Activations Using Compressive Measurements, the Electronic Journal of Statistics, 11(1), 2647–2678. arXiv

  • Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. and Wasserman, L. (2016). Distribution-Free Predictive Inference For Regression,the Journal of the American Statistical Association, 113(523), 1094-111. arXiv

  • Kim, J., Chen, Y.-C, Balakrishnan, S., Rinaldo, A. and Wasserman, L. (2016). Statistical Inference for Cluster Trees, NIPS 2016. arXiv

  • Kim, N., Wilburne, D., Petrović, S. and Rinaldo A. (2016). On the Geometry and Extremal Properties of the Edge-Degeneracy Model, SDM16 Workshop on Mining Networks and Graphs. arXiv

  • Yin, M., Rinaldo, A. and Fadnavis S. (2015). Asymptotic quantization of exponential random graphs, the Annals of Applied Probability, 26(6), 3251-3285. arXiv

  • Sharpnack, J., Rinaldo, A. and Singh, A. (2015). Detecting Anomalous Activity on Networks With the Graph Fourier Scan Statistic, IEEE Transaction on Signal Processing, 64(2), 364-379. arXiv

  • Chazal, F., Fasy, B.T., Lecci, F., Michel, B., Rinaldo, A. and Wasserman, L. (2015). Subsampling Methods for Persistent Homology, ICML 2015. arXiv

  • Lei, J. and Rinaldo, A. (2015). Consistency of Spectral Clustering in Sparse Stochastic Block Models, Annals of Statistics, 43(1), 215 – 237. arXiv

  • Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A. and Wasserman, L. (2015). Stochastic Convergence of Persistence Landscapes and Silhouettes, Journal of Computational Geometry, 6(2), 140-161. The paper initially appeared in the Proceedings of the 30th Symposium of Computational Geometry SoCG 2014. arXiv

  • Sadeghi, K. and Rinaldo, A. (2014). Statistical Models for Degree Distributions of Networks, NIPS 2014 Workshop “From Graphs to Rich Data.” arXiv

  • Stasi, D., Sadeghi, K., Rinaldo, A., Petrović, S. and Fienberg, S.E. (2014). \(\beta\) models for random hypergraphs with a given degree sequence, COMPSTAT 2014. arXiv

  • Wasserman, L., Kolar, M. and Rinaldo, A. (2014). Berry-Essen Bounds for Estimating Undirected Graphs, Electronic Journal of Statistics, 8(1), 1188-1224. arXiv

  • Yang, X., Rinaldo, A. and Fienberg, S.E. (2014). Estimation for Dyadic-Dependent Exponential Random Graph Models, the Journal of Algebraic Statistics, 5(1).

  • Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S. and Singh, A. (2014). Confidence Sets for Persistence Diagrams, The Annals of Statistics, 42(6), 2301–2339. arXiv

  • Lecci, F., Rinaldo, A. and Wasserman, L. (2014). Statistical Analysis of Metric Graph Reconstruction, Journal of Machine Learning Research, 15, 3425-3446. arXiv

  • Kent, B. P., Rinaldo, A., Yeh, F.-C. and Verstynen, T. (2014). Mapping Topographic Structure in White Matter Pathways with Level Set Trees, PLOS One. link

  • Chazal, F., Fasy, B. T., Lecci, F., Rinaldo, A., Singh, A., Wasserman L. (2013). On the Bootstrap for Persistence Diagrams and Landscapes, Modeling and Analysis of Information Systems, 20:6, 96–105. arXiv

  • Balakrishnan, S., Narayanan, S., Rinaldo, A., Singh, A. and Wasserman (2013). Cluster Trees on Manifolds, NIPS 2013. arXiv

  • Lei, J., Rinaldo, A. and Wasserman, L. (2015). A Conformal Prediction Approach to Explore Functional Data, Annals of Mathematics and Artificial Intelligence, 74, 29–43. arXiv

  • Poczos, B., Rinaldo, A., Singh, A. and Wasserman, L. (2013). Distribution-Free Distribution Regression, AISTATS 2013. arXiv

  • Sharpnak, J., Rinaldo, A. and Singh, A. (2013). Changepoint Detection over Graphs with the Spectral Scan Statistic, AISTATS 2013. arXiv

  • Rinaldo, A., Petrovíc, S. and Fienberg, S.E. (2013). Maximum Likelihood Estimation in Network Models, Annals of Statistics, 41(3), 1085-1110. arXiv R code

  • Hall, R., Rinaldo, A. and Wasserman, L. (2013). Differential Privacy for Functions and Functional Data, Journal of Machine Learning Research, 14, 703-727. arXiv

  • Shalizi, C. R. and Rinaldo, A. (2013). Consistency under Sampling of Exponential Random Graph Models, Annals of Statistics, 41(2), 508–535.

  • Rinaldo, A., Petrovíc, S. and Fienberg, S.E. (2012). How Does Maximum Likelihood Estimation for the \(p_1\) Model Scale for Large Sparse Networks?, NIPS 2012 workshop on “Algorithmic and Statistical Approaches for Large Social Network Data Sets” pdf

  • Hall, R., Rinaldo, A. and Wasserman, L. (2012). Random Differential Privacy, Journal of Privacy and Confidentiality, 4(2), 43–59. arXiv

  • Rinaldo, A., Singh, A., Nugent, R. and Wasserman, L. (2012). Stability of Density-Based Clustering, Journal of Machine Learning, 13, 905–948. link

  • Fienberg, S.E. and Rinaldo, A. (2012). Maximum Likelihood Estimation in Log-linear Models, Annals of Statistics, 40(2), 996–1023. The original version of the manuscript appeared on the arXiv under the title “Maximum Likelihood Estimation in Log-linear Models: Theory and Algorithms” and is different than the published one.

  • Balakrishnan, S., Rinaldo, A., Sheehy, D. R., Singh, A. and Wasserman, L. (2012). Minimax Rates for Homology Inference, AISTATS 2012. arXiv

  • Sharpnack, J., Rinaldo, A. and Singh, A. (2012). Sparsistency of the Edge Lasso over Graphs, AISTATS 2012. link

  • Nardi, Y. and Rinaldo, A. (2012). The Log-linear Group Lasso Estimator for Hierarchical Log-Linear Models and Its Asymptotic Properties, Bernoulli, 18(3), 945-974.

  • Yang, X., Fienberg, S.E. and Rinaldo, A. (2012). Differential Privacy for Protecting Multi-dimensional Contingency Table Data: Extensions and Applications, Journal of Privacy and Confidentiality, 4(1), 101-125. link

  • Balakrishnan, S., Kolar, M., Rinaldo, A., Singh, A. and Wasserman, L. (2011). Statistical and computational tradeoffs in biclustering, NIPS 2011 Workshop “Computational Trade-offs in Statistical Learning.” pdf

  • Kolar, M., Balakrishnan, S., Rinaldo, A. and Singh, A. (2011). Minimax Localization of Structural Information in Large Noisy Matrices, Neural Information Processing Systems, NIPS 2011. link

  • Nardi, Y. and Rinaldo, A. (2011). Autoregressive Process Modeling via the Lasso Procedure, Journal of Multivariate Analysis, 103(3), 528–549. arXiv

  • Fienberg, S.E., Rinaldo, A. and Yang, X. (2011). Differential Privacy and the Risk-Utility Tradeoff for Multi-dimensional Contingency Tables, Lecture Notes in Computer Science,2011, Volume 6344, 187–199, Springer. pdf

  • Rinaldo, A. and Wasserman, L. (2010). Generalized Density Clustering, The Annals of Statistics, 38(5), 2678–2722. arXiv

  • Petrovíc, S., Rinaldo, A. and Fienberg, S.E. (2009). Algebraic Statistics for a Directed Random Graph Model with Reciprocation, Algebraic Methods in Statistics and Probability II, Contemporary Mathematics series, published by the American Mathematical Society. pdf

  • Fienberg, S.E., Petrovíc, S. and Rinaldo, A. (2009). Algebraic Statistics for \(p_1\) Random Graphs Models: Markov Bases and their Uses, “Looking back: A festschrift to Honor Paul Holland,” published by the Educational Testing Services.

  • Rinaldo, A. (2009). Properties and Refinement of the Fused Lasso, The Annals of Statistics 37, 5B, 2922–2952. Correction

  • Rinaldo, A., Fienberg, S.E. and Zhou, Y. (2009). On the Geometry of Discrete Exponential Families with Application to Exponential Random Graph Models, Electronic Journal of Statistics, 3, 446–484.

  • Nardi, Y. and Rinaldo, A. (2008). On the Asymptotic Properties of The Group Lasso Estimator in Least Squares Problem, Electronic Journal of Statistics, 2, 605–633.

  • Dobra, A., Fienberg, S.E., Rinaldo, A., Slavkovic, A. and Zhou, Y. (2008). Algebraic Statistics and Contingency Table Problems: Estimation and Disclosure Limitation, in Emerging Applications of Algebraic Geometry, (M. Putinar, S. Sullivant, eds.), IMA Series in Applied Mathematics, Springer-Verlag. pdf

  • Fienberg, S.E., Hersh, P., Rinaldo, A. and Zhou, Y. (2007). Maximum Likelihood Estimation in Latent Class Models For Contingency Table Data, in Algebraic and Geometric Methods in Statistics, Cambridge University Press. pdf

  • Fienberg, S. E., Rinaldo, A. (2007). Three Centuries of Categorical Data Analysis: Log-linear Models and Maximum Likelihood Estimation, Journal of Statistical Planning and Inference, 137, 11, 3420-3445. Special Issue: In Celebration of the Centennial of The Birth of Samarendra Nath Roy (1906-1964). pdf

  • Eriksson, N., Fienberg, E. S., Rinaldo, A., Sullivant, S. (2006). Polyhedral Conditions for the Nonexistence of the MLE for Hierarchical Log-linear Models, Journal of Symbolic Computation, 41, 222–233. Special Issue on Algebraic Statistics. pdf

  • Rinaldo, A., Balcanu, S., Devlin, B., Sonpar, V., Wasserman, L., Roeder, K. (2005). Characterization of Multilocus Linkage Disequilibrium, Genetic Epidemiology, 28 (3), 193–206.